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Life with Carbon Monoxide
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This review focuses on how microbes live on CO as a sole source
of carbon and energy and with CO by generating carbon monox-
ide as a metabolic intermediate. The use of CO is a property of
organisms that use the Wood-L jungdahl pathway of autotrophic
growth. The review discusses when CO metabolism originated,
when and how it was discovered, and what properties of CO are
ideal for microbial growth. How CO sensing by a heme-containing
transcriptional regulatory protein activates the expression of CO
metabolism-linked genes is described. Two metalloenzymes are the
cornerstones of growth with CO: CO dehydrogenase (CODH) and
acetyl-CoA synthase (ACS). CODH oxidizes CO to CO2, providing
low-potential electrons for the cell, or alternatively reduces CO2 to
CO. The latter reaction, when coupled to ACS, forms a machine
for generating acetyl-CoA from CO2 for cell carbon synthesis. The
recently solved crystal structures of CODH and ACS along with
spectroscopic measurements and computational studies provide in-
sights into novel bio-organometallic catalytic mechanisms and into
the nature of a 140 Å gas channel that coordinates the generation
and utilization of CO. The enzymes that are coupled to CODH/ACS
are also described, with a focus on a corrinoid protein, a methyl-
transferase, and pyruvate ferredoxin oxidoreductase.
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PROSPECTIVE AND INTRODUCTION

This review will focus on how microbes live, not only on
CO as a sole source of carbon and energy, but also with
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CO by generating carbon monoxide as a metabolic inter-
mediate. Since CO is an inorganic carbon source, we will
consider growth on CO as autotrophic, although Wilhelm
Pfeffer’s 1897 definition, which is still used today, includes
organisms able to synthesize their cell substance from in-
organic carbonate as their main source of carbon (Brock
& Schlegel, 1989). The use of CO, a toxic gas to animals,
as a metabolic building block is an interesting property
of certain classes of diverse organisms that can grow on
CO2 by any of the known CO2 fixation pathways as long
as they have a mechanism for converting CO into CO2.
This review will focus on the enzyme, CO dehydrogenase
(CODH), that interconverts CO and CO2. It will also focus
on a CO2 and CO fixation mechanism called the Wood-
Ljungdahl pathway (Figure 1). This figure shows growth
on glucose; however, as described below, this pathway al-
lows for autotrophic growth on CO2 with electrons coming
from H2 oxidation, on CO serving as both a carbon and en-
ergy source, and on other compounds. Several questions
related to the microbial metabolism of CO will be dis-
cussed. When did microbial CO metabolism originate and
how was it discovered? Is there reasonable evidence for
the hypothesis that the first living organisms metabolized
CO? What properties of CO make it ideal for growth of
certain microbes?

It is timely to describe recent exciting findings related to
the two metalloenzymes at the foundation of CO
metabolism: (CODH) and acetyl-CoA synthase (ACS).
CODH is a redox-chemical transformer that generates
high-energy electrons as it catalyzes the oxidation of CO to
CO2 (Equation (1)). The CO2 is then fixed into cellular car-
bon by one of the reductive CO2 fixation pathways, like the
Calvin-Benson-Bassham Cycle, the reverse tricarboxylic
acid (TCA) cycle, the 3-hydroxypropionate cycle, or the
Wood-Ljungdahl pathway. In at least some of these organ-
isms (Youn et al., 2004), e.g., Rhodospirillum rubrum, CO
is sensed by binding to a heme-containing transcriptional
regulatory protein (Aono et al., 1996; Shelver et al., 1997)
that activates the expression of a battery of structural,
metal incorporation, and maturation genes (Fox et al.,
1996).
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FIG. 1. The Wood-Ljungdahl pathway of autotrophic CO
and CO2 fixation. CODH, CO dehydrogenase; ACS, acetyl-
CoA synthase; MeTr, methyltransferase; CFeSP, Corrinoid
iron-sulfur protein. PFOR, pyruvate ferredoxin oxidoreductase.
Reactions leading to the formation of the methyl group of acetyl-
CoA are colored red, while those leading to the carbonyl group
are colored blue.

When the redox-chemical transformer CODH is cou-
pled to ACS, it forms a powerful machine for generating
the ubiquitous building block acetyl-CoA from CO2, a
methyl group, and CoA (Figure 2). In this case, CODH re-
duces CO2 to CO, which is the source of the carbonyl group
of acetyl-CoA in the final steps of the Wood-Ljungdahl
pathway. ACS is a NiFeS enzyme that condenses Coen-
zyme A, a methyl group, and CO generated by CODH
to form acetyl-CoA (Equation (2)). The methyl group is
donated by an organometallic methylcobamide (a vitamin
B12 derivative) species on a protein called the corrinoid

FIG. 2. CODH/ACS, a nanomachine. CODH is represented as a transformer for generating CO and ACS as a condenser that
converts CO, a methyl group, and CoA to form acetyl-CoA, a cellular biosynthetic building block and source of ATP.

iron-sulfur protein (CFeSP). The structure and function
of the CFeSP, and how this methyl-Co intermediate is
generated in a methyltransferase-catalyzed reaction, are
discussed more briefly since these aspects of the Wood-
Ljungdahl pathway have been recently reviewed (Banerjee
& Ragsdale, 2003).

This review describes the recently solved crystal struc-
tures of CODH and ACS, which have prompted a rein-
terpretation of spectroscopic studies performed over the
past two decades. These structures, spectroscopic mea-
surements, and computational studies provide insights into
the novel bioorganometallic catalytic mechanisms that un-
derlie the Wood-Ljungdahl pathway and resemble some
important industrial reactions. Generation and utilization
of the toxic gas CO occur at active sites that are 70 Å
apart. How are the activities of these two sites coordinated
so that CO does not escape from the enzyme? The nature
of a channel and the evidence for kinetic coupling between
the two active sites is described. This gas channel is com-
pared to other gas channels that have been described in
nature.

Life with CO involves the conceptually simplistic step-
wise condensation of two one-carbon compounds to form
a two-carbon acetyl unit followed by the successive ad-
dition of one-carbon units. Recent studies on pyruvate
ferredoxin oxidoreductase (PFOR), the enzyme that gen-
erates pyruvate (Equation (3)), the first three-carbon unit,
are only briefly described since it has been recently re-
viewed (Ragsdale, 2003b). PFOR is extremely important
because it also is a source of CO2 and low-potential elec-
trons when the cells grow on sugars. Further reactions that
interface the Wood-Ljungdahl pathway to the synthesis of
cellular components are described. The review also sum-
marizes some studies of how CO metabolism is regulated
and the radical differences in regulatory systems between
those organisms that function to oxidize CO and those that
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generate and utilize it.

2 electrons + 2 H+ + CO2 ↔ CO + H2O [1]

CO + CH3 CFeSP + CoA → acetyl-CoA

+ CFeSP + H+ [2]

Pyruvate + CoA ↔ acetyl-CoA + CO2

+ H+ + 2 electrons [3]

Discovery of Microbial CO Metabolism

Enzymatic CO oxidation was discovered around 1903,
when thin films of bacteria were found growing in a purely
mineral medium with coal gas, a mixture of H2 and CO,
as the carbon source (Beijerinck & van Delden, 1903).
Kaserer recognized that a similar bacterial culture was
growing on a carbon-containing component of the atmo-
sphere (Kaserer, 1906) but two decades passed before the
first bacterial strain that could grow on CO was isolated
(Lantzsch, 1922). It is now known that CO can serve as
a carbon and electron source for many bacteria, including
anaerobes such as Moorella thermoacetica (Daniel et al.,
1990; Kerby & Zeikus, 1983), some purple sulfur bacte-
ria akin to R. rubrum (Uffen, 1983), and Carboxydother-
mus hydrogenoformans (Svetlichny et al., 1991), as well
as some aerobic carboxydobacteria like Oligotropha car-
boxidovorans (Meyer & Schlegel, 1983). These are the
organisms in which CO metabolism has been most thor-
oughly studied.

This area of CO oxidation and synthesis may eventu-
ally have a practical benefit. Development of catalysts that
can be used on a large scale to lower CO concentrations in
heavily polluted areas is one significant challenge to sci-
ence. Furthermore, many scientists and government policy
makers would be interested in ways to decrease the concen-
tration of CO2, a potent greenhouse gas that is relatively
inert. One possibility is to develop biomimetic catalysts
since CODH rapidly and efficiently oxidizes CO at rates
between 4,000 and 40,000 s−1, depending on the source,
and reduces CO2 (∼11 s−1) (Kumar et al., 1994; Lindahl
et al., 1990a) with virtually no overpotential and under
mild conditions.

Why CO? Importance of CO Metabolism

CO Uptake and Oxidation. CO is a toxic, odorless,
and tasteless gas that is produced by natural and anthro-
pogenic processes by the incomplete combustion of
organic materials. The OSHA limit for CO is 50 ppm con-
tinuous exposure for 8 h, because mild effects of CO poi-
soning are observed within 2–3 h when CO levels climb
to 200 ppm and exposure to 1000 ppm for 1 h is fatal.

CO is produced by incomplete combustion of fuel, for
example, from motor vehicle exhaust, which contributes
about 60% of all CO emissions in the USA. The major
natural CO sources are methane and natural hydrocarbon
oxidation. CO emissions, which are nearly equally dis-
tributed between natural and manmade sources, lead to
atmospheric levels of CO ranging from about 0.1 ppm in
rural areas to approximately 30 ppm in urban areas. Never-
theless, some microbes base their autotrophic metabolism
on such trace levels by oxidizing CO at rates as high
as 40,000 mol CO per mol enzyme per second and cat-
alytic efficiencies reaching 2 × 109 M−1s−1 (Svetlitchnyi
et al., 2001). Microbial CO metabolism is quite impor-
tant to all animals, since about 108 tons of CO are re-
moved from the lower atmosphere of the earth by bac-
terial oxidation every year (Bartholomew & Alexander,
1979), which helps to maintain ambient CO below toxic
levels.

CO can serve as both a carbon and electron source for
organisms that use the Wood-Ljungdahl pathway. First, it
can provide extremely low potential electrons for reducing
cellular electron carriers. With a CO2/CO reduction poten-
tial of −558 mV (pH 7.0; Grahame & Demoll, 1995), CO
is about 1000-fold more potent than NADH.

Second, CO has ideal chemical properties for the bio-
organometallic reaction sequence in the Wood-Ljungdahl
pathway. Containing a multiple bond, C≡O is a weak
Lewis base and an unsaturated soft ligand that can ac-
cept metal dπ electrons by a process called back bonding.
Thus, CO acts both as a sigma donor and pi acceptor that
can form stable complexes with the low valent states of
the metal sites in enzymes. Of course, this property also
makes CO a strong inhibitor of metalloproteins that use
low valent metals in their functions, like hydrogenases and
hemeproteins that function to bind O2 or other diatomic
gases. Besides its ability to serve as a strong ligand for
transition metals, the metal carbonyls that are produced
are known to undergo facile ligand substitutions, inser-
tions, eliminations, and nucleophilic additions (Crabtree,
1988; Lukehart, 1985). These reactions can be fine tuned
by altering the polarization of the metal-bound CO. For
example, nucleophilic addition reactions (e.g., attack by
hydroxide anion during CO oxidation) and migratory in-
sertion reactions (e.g., methyl addition during acetyl-CoA
synthesis) are promoted by increasing the electrophilic-
ity of the CO carbon. On the other hand, an electrophilic
attack at oxygen would be favored by increasing the nucle-
ophilicity at the CO oxygen. It will be exciting for compu-
tational chemists to consider ways that the Ni active sites of
CODH and ACS, which both appear to form Ni-CO com-
plexes (Chen et al., 2003), have been crafted to enhance
the particular required reaction and prevent other poten-
tially inhibitory reactions. For example, the M-CO com-
plex plays a key role in industrial organometallic catalysis
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reactions, including catalytic carbonylation, the Fischer-
Tropsch reaction, reactions with syn Gas, hydroformy-
lation reactions, homologation reactions, the Water-Gas
Shift Reaction, and hydrogenation reactions using water
as the hydrogen source (Ford & Rokicki, 1988). Some
important strides in computational studies of the CODH
and ACS reactions have already been made (Schenker &
Brunold, 2003; Webster et al., 2004).

Another reason that CO is an excellent metabolite for
organisms that use the Wood-Ljungdahl pathway is that
it is already dehydrated and at the oxidation state of the
carbonyl group of acetyl-CoA, which is a key building
block for cellular anabolism and an important source of
ATP.

CO Production. Organisms that use the Wood-
Ljungdahl pathway generate CO from CO2 or pyruvate
as a metabolic intermediate (Menon & Ragsdale, 1996a).
Humans also produce CO as a signal molecule (Verma
et al., 1993) during heme metabolism by heme oxyge-
nase (Boehning & Snyder, 2003). CO is also biologically
generated during conversion of S-methylthioadenosine
to methionine (Dai et al., 1999), aromatic amino acid
metabolism by bacteria (Hino & Tauchi, 1987), aldehyde
decarbonylation by plants (Cheesbrough & Kolattukudy,
1984), and heme degradation by heme oxygenase
(Tenhunen et al., 1969). The latter reaction appears to
allow CO to serve as a neurotransmitter (Verma et al.,
1993) and to regulate vascular cGMP levels (Morita et al.,
1995). Of the above reactions, it appears that only the
Wood-Ljungdahl pathway is capable of direct metabolism
of CO.

A major focus of this review is on anaerobic microbes
that catalyze the reduction of CO2 to CO with CODH.
As shown in Figure 1, CO2 can come from the decar-
boxylation of pyruvate, which is generated from sugars
by the Embden-Meyerhof pathway. It also can be formed
from the carboxyl group of benzoic acid and its derivatives
(Hsu et al., 1990a, 1990b). Some anaerobic microbes, like
acetogens and methanogens, can use the Wood-Ljungdahl
pathway to utilize CO2 from the growth medium. The
coupling of pyruvate oxidation to CO synthesis and to
acetyl-CoA formation has been well studied in M.
thermoacetica (Menon & Ragsdale, 1996a, 1996b, 1997).
PFOR catalyzes the conversion of pyruvate to acetyl-CoA
and CO2 (Equation (3)). Then CODH reduces CO2 to CO
(Equation (1)). Finally, ACS, which is the other subunit
of the bifunctional CODH/ACS, catalyzes the conden-
sation of CO with a methyl group and coenzyme A to
form acetyl-CoA (Equation (2)). Acetyl-CoA is then used
in ATP generation or in cellular biosynthesis
(Figure 1). Thus, the bifunctional enzyme CODH/ACS
plays an essential role in energy metabolism and cellular
biosynthesis.

Since these organisms generate CO during their growth,
why aren’t they environmentally hazardous? On the con-
trary, we harbor acetogens and methanogens in our gas-
trointestinal tract (Dore et al., 1995; Wolin & Miller, 1994).
Surprisingly, although cultures of M. thermoacetica
growing on glucose with a 100% CO2 gas phase have a
vast potential for CO production, they only produce about
50 ppb CO (Diekert et al., 1984). As discussed below,
there is tight regulation of CO production and CO uti-
lization. There is strong evidence that the CO produced
during acetyl-CoA biosynthesis is sequestered in a molec-
ular channel, which maintains the CO concentration below
toxic levels for the host organisms and allows organisms
to retain this valuable carbon and energy source without
having it escape into the environment.

CO and CO2 Fixation with an
Evolutionary Perspective

Since CO and CO2 are in equilibrium, CO metabolism
is linked to the global carbon cycle, which involves the
oxidation of organic carbon to CO2 by heterotrophic or-
ganisms as an energy source and the replenishment of
fixed organic carbon by autotrophic organisms in a
reductive process called CO2 fixation. CO2 is returned
to the carbon cycle by one of the following path-
ways: the Calvin-Benson-Basham cycle, the reductive
TCA cycle, the Wood-Ljungdahl (acetyl-CoA) pathway
(Equation (4)), or the 3-hydroxypropionate (Menendez
et al., 1999) cycle. The Calvin-Benson-Basham cycle re-
quires energy, which is driven by photosynthesis or chemo-
autotrophy. On the other hand, the Wood-Ljungdahl
pathway, in coupling H2 oxidation to CO2 reduction, is
exergonic and conserves energy for the organism by
electron transfer-linked phosphorylation (Hugenholtz &
Ljungdahl, 1989).

Perhaps the use of CO remains from the early atmo-
spheric conditions when life first evolved around 4 billion
years ago. This follows from the hypothesis that the first
organisms were autotrophic (Huber & Wachtershauser,
1997; Russell et al., 1998; Russell & Hall, 1997). Based
on the patterns of isotopic fractionation between 12C and
13C, the sedimentary carbon record indicates that auto-
trophic growth developed soon after the earth became hab-
itable (Schidlowski et al., 1983). Furthermore, anaerobic
organisms using the Wood-Ljungdahl pathway have an
isotope fractionation pattern consistent with the hypothe-
sis that they may have been using inorganic compounds
like CO and H2 as an energy source and CO2 as an electron
accepter approximately 1 billion years before O2 appeared
(Brock, 1989). Since volcanic gases can contain as high
as 1% CO, perhaps early life forms evolving in volcanic
sites or hydrothermal vents could have used CO as their
carbon and energy source. If this scenario is correct, CO
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metabolism today can be viewed as the extant survivor
of early metabolic processes (Huber & Wachtershauser,
1997).

4 H2 + 2 CO2 → CH3COO− + H+ + 2 H2O

�G0′ = −95 kJ/mol [4]

MICROBES THAT CAN METABOLIZE
CARBON MONOXIDE

Aerobic CO Metabolism

Carboxydotrophic bacteria are aerobic microbes that grow
on CO as their sole source of carbon and energy. These mi-
crobes transfer the electrons derived from CODH-
catalyzed CO oxidation through an electron transport chain
that finally reduces oxygen according to Equation (5)
(Meyer & Rhode, 1984). The CO2 is assimilated into cell
carbon through the Calvin-Benson-Basham pathway. The
carboxydobacteria are well suited for a role in CO detox-
ification in the environment because they have a high
propensity for uptake of this trace gas, with Km values
as low as 0.6 µM (Meyer et al., 1993); however, their
turnover numbers are nearly 1000-fold lower than those of
the anaerobic Ni-CODHs (Gnida et al., 2003). These en-
zymes are called Mo-CODHs because they contain molyb-
dopterin (Mo-CODH) and share many properties with the
Mo hydroxylases, such as sulfite oxidase and xanthine
oxidase.

O2 + 2.19 CO → 1.83 CO2 + 0.36 Cell Carbon [5]

FIG. 3. Coo Regulon. In the presence of CO, CooA binds to the promotor regions to activate transcription of two operons.
One operon encodes a membrane-bound hydrogenase and its accessory genes, while the other encodes CODH and its accessory
proteins. Modified from Watt and Ludden (1999).

Genes and Regulation of Anaerobic CO Metabolism

CO Sensing and Oxidation by the coo System.
R. rubrum, which utilizes CO as a source of carbon and
energy, contains the coo regulon, consisting of at least
two operons (Figure 3). When microbes sense the pres-
ence of CO, expression of the coo genes is induced at
least 1000-fold (Shelver et al., 1995). The first operon
in the coo gene cluster encodes a hydrogenase and the
proteins involved in generating the active form of the en-
zyme, while the second operon consists of the genes for
CODH (cooS), a membrane-associated electron transfer
FeS protein (cooF), and at least three other genes involved
in generating the NiFeS-active site of CooS. CooC is a
Ni insertase (Jeon et al., 2001) that is similar to ureE
in binding and hydrolyzing ATP or GTP (Song et al.,
2001). CooJ also is similar to UreE and contains a His-rich
C-terminus that can bind as many as four Ni ions (Watt &
Ludden, 1998). The role of CooT is less well understood,
but it appears to aid in ensuring that Ni, instead of other
metals, are incorporated into the active site of CO oxi-
dation, called Cluster C (below) (Kerby et al., 1997). The
proteins involved in Ni incorporation into CODH and their
functions have been reviewed (Watt & Ludden, 1999).

CO is sensed by a heme that is bound to CooA, which
is a member of a large family of transcriptional activa-
tors that include the cAMP regulatory protein (CRP) and
fumarate nitrate reductase regulator (FNR) (Aono, 2003).
These proteins contain an N-terminal effector binding do-
main, which in CooA is a heme wrapped in a beta roll
structure, and a C-terminal helix-turn-helix DNA binding
domain (Figure 4) (Lanzilotta et al., 2000). In the unac-
tivated ferrous form of CooA, a histidine residue (His77)
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FIG. 4. The structure of CooA. The two monomers are colored
orange or blue and the heme is shown in red. Generated using
Chimera from PDB accession number 1FT9.

and, surprisingly, the amino terminal proline (Pro2) serve
as the heme ligands (Lanzilotta et al., 2000). Although
only the structure of reduced CooA is known, spectro-
scopic studies have uncovered a complex series of ligand
switches. While the ferrous heme of CooA is 6-coordinate
with Pro2 and His77 as the axial ligands, Cys75 and Pro2
are the ligands in the ferric state (Aono, 2003; Coyle et al.,

FIG. 5. The acs operon from M. thermoacetica is compared with that of M. thermophila.

2003; Yamamoto et al., 2001). CO binds to the ferrous
state (with Pro and His ligands), replacing the proline lig-
and, which causes a major structural rearrangement, pro-
moting the formation of a productive complex with RNA
poymerase and the coo promoter region (Aono, 2003).
By mutagenesis, the sites of interaction between CooA
and RNA polymerase have been mapped (Leduc et al.,
2001). A key region in CooA and related proteins is a long
helix, called the C-helix, that connects the DNA-binding
and the effector domains, and serves as the dimer inter-
face (Lanzilotta et al., 2000). It is proposed that when CO
binds, the heme is displaced into an adjacent cavity and
is approached by the C-helix of the opposite subunit. It is
suggested that motions trigger the protein conformation
change required for DNA binding.

CooA is one of several gas (O2, CO, NO) sensor proteins
that have been identified (Aono, 2003). A mammalian CO-
sensing heme protein, called neuronal PAS domain protein
2, which serves as a transcriptional regulator of circadian
rhythm, recently has been reported (Dioum et al., 2002).

CO Metabolism and the acs System—A CO Metabo-
lizing Machine. The proteins that catalyze the carbonyl
(Western) part of the Wood-Ljungdahl pathway are en-
coded by the acs operon (Figure 5). The genes are orga-
nized in order of their role in the pathway: MeTr, CFeSP,
and CODH/ACS. A Ni-processing protein (AcsF), such
as UreE in urease activation (Song et al., 2001), or CooC
in the coo system (Jeon et al., 2001), and an iron-sulfur
protein (orf7) with an unknown role were recently identi-
fied (Loke & Lindahl, 2003). This gene cluster is named
after ACS, which is unique to organisms that use the
Wood-Ljungdahl pathway and, thus, serves as a marker
enzyme for this pathway. Some acs orthologs are found
among various anaerobic Bacteria (acetogens, sulfate re-
ducers, desulfitobacteria) and Archaea (methanogens and
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Archaeoglobus). Although the acs genes are not regulated
by CooA, they are mildly upregulated by CO and strongly
regulated at a transcriptional level by nitrate, which is
an alternative electron acceptor to CO2 (Arendsen et al.,
1999). The operons in the evolutionarily distant divergent
methanogens and acetogens are similar but also show sig-
nificant differences; for example, there appear to be two
extra [4Fe-4S] clusters in the methanogenic CODH, and
the arrangement of the genes encoding CODH and ACS
appear to be switched relative to the M. thermoacetica
operon. The methanogenic CODH/ACS (ACDS) has been
reviewed recently (Grahame, 2003).

ENZYMES THAT CATALYZE CO OXIDATION

Nomenclature: CODH, ACS, CODH/ACS

The enzymes that catalyze CO oxidation and those that cat-
alyze acetyl-CoA synthesis have sometimes been collec-
tively called “carbon monoxide dehydrogenases”
(CODHs). This is problematic for several reasons. CO ox-
idation and acetyl-CoA synthesis are entirely different in
character and would fall into separate categories in the In-
ternational Enzyme Commission Classification scheme—
the oxidoreductase (EC 1.2.x.x) and the lyase (EC 4.2.x.x)
classes, respectively. In addition, some CODHs do not con-
tain ACS activity, and ACS can be expressed in the ab-
sence of CODH. Names for each activity abound. CODH
has been called CO:acceptor oxidoreductase, CO oxidase,
and CO2 reductase.

To avoid confusion, it is important to use names for
these enzymes that are congruous with the International
Enzyme Commission classification scheme. In 1996, after
an extensive discussion among some of the major groups
in the field, the following nomenclature was suggested
in a review article (Ragsdale & Kumar, 1996). It is sug-
gested that the name CO dehydrogenase (CODH) be used
as the recommended name and CO:acceptor oxidoreduc-
tase as the systematic name for the activity that catalyzes
CO oxidation to CO2 or its reverse. This name correctly
denotes that this reaction is in the EC1.2 oxidoreduc-
tase class. The acceptor cannot be further specified be-
cause CODH efficiently uses many physiological electron
acceptors (ferredoxin, flavodoxin, cytochromes, rubre-
doxin, etc.) and dye mediators (methylene blue, thionin,
methyl viologen, FMN, FADH2, etc.).

It is suggested that the name acetyl-CoA synthase (ACS)
should be used as the recommended name and CO:
methylated corrinoid iron-sulfur protein:CoA lyase as the
systematic name for the enzyme that assembles acetyl-
CoA from enzyme-bound methyl, CO, and CoA groups.
Reasons for these choices are described below. To denote
the source of the enzyme, the genus and species are in-
cluded as a prefix in lower-case italicized letters; e.g., for

the Moorella thermoacetica CODH, the name would be
mtCODH. For the methanogenic ACS, the name acetyl-
CoA decarbonylase synthase has often been used; how-
ever, it seems unnecessary to use more complicated terms
like acetyl-CoA decarbonylase synthase, because it seems
redundant to name the reaction in both directions. It also
has been argued that both the CODH and ACS activities
can be included under the umbrella CODH; however, this
name disregards the ACS function. The term acetyl-CoA
synthase has been in use since 1985 and describes the phys-
iological role of the enzyme in acetogenic bacteria and
methanogens to catalyze the key activity that defines the
autotrophic Wood-Ljungdahl pathway. The recommended
systematic name, CO:methylated corrinoid iron-sulfur
protein:CoA lyase, includes the three substrates for ACS
and the enzyme class that designates that the enzyme cat-
alyzes the formation of acetyl-CoA by group elimination
reactions in the absence of ATP hydrolysis. Since the re-
action is unlike that of other lyase subclasses, ACS should
gain the next highest subclass number.

Following from the above discussion, it is recommen-
ded that the bifunctional enzyme should be CO dehydro-
genase/acetyl-CoA synthase or CODH/ACS. Neither ACS
nor CODH alone would suffice because they describe only
the partial reactions. CODH/ACS is preferable to ACS/
CODH because CODH precedes ACS in function.

Early Studies of CODH and CODH/ACS

Yagi first identified an enzyme that catalyzes the oxida-
tion of CO to CO2 (Yagi, 1959). Diekert and Thauer first
identified this enzyme in acetogenic bacteria (Diekert &
Thauer, 1978), yet it was nearly a decade before CODH
was purified to homogeneity, due mainly to its extreme
oxygen sensitivity (Ragsdale et al., 1983a). The secret to
working with most of the enzymes involved in this path-
way is to strictly exclude oxygen. Bacteria must be grown
and harvested anaerobically, and every step in the purifica-
tion and manipulation of the enzymes must be performed
in an anaerobic chamber (we use a chamber manufactured
by Vacuum Atmospheres that maintains the oxygen level
at ∼0.2 ppm).

One reason that purification of this enzyme was impor-
tant was to test the hypothesis that formyl-H4folate, the
first cofactor-bound one-carbon compound in the Wood-
Ljungdahl pathway, may be formed by direct transfer of
a formate oxidation level intermediate on CODH (called
[HCOOH] at the time) to formyl-H4folate synthetase (Hu
et al., 1982). Bypassing formate dehydrogenase in this
manner would be advantageous because it would save the
ATP required for the synthetase reaction. After CODH
was purified to homogeneity and combined with the other
purified enzymes of the Wood-Ljungdahl pathway, it was
demonstrated that acetyl-CoA synthesis indeed required
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formate dehydrogenase, as well as formyl-H4folate syn-
thetase and CODH/ACS (Ragsdale et al., 1983a).

CODH is one of the few nickel-containing proteins so
far discovered in nature. The first indications that CODH
contains Ni came from growth studies in which the ad-
dition of nickel to the growth medium stimulated CODH
activity (Diekert & Thauer, 1980; Diekert et al., 1979).
Biochemical evidence was provided when CODH activity
and radioactivity were shown to comigrate in polyacry-
lamide gels of cell extracts of M. thermoacetica grown
in the presence of the radioactive Ni isotope, 63Ni (Drake
et al., 1980). When the M. thermoacetica CODH was puri-
fied to homogeneity, it appeared to contain 2 mol of nickel
per mol of αβ dimeric enzyme (Ragsdale et al., 1983a), al-
though recent studies demonstrate that the fully active pro-
tein contains 3 Ni per dimeric unit (Seravalli et al., 2004).
It contains subunits of 77 kDa and 71 kDa (Ragsdale et al.,
1983a). CODH/ACS from M. thermoacetica was also pu-
rified to near homogeneity by Diekert and Ritter(1983)
and shown to contain nickel. Diekert and Ritter(1983) also
correctly surmised that the protein had an α2β2 structure
which was verified later (Xia et al., 1996).

Early Studies of ACS

Many enzymes with the name CODH only catalyze the
oxidation of carbon monoxide or its reverse reaction.
However, the most important role for the CODH/ACS in
acetogenic bacteria is to catalyze the synthesis of acetyl-
CoA from a methyl group, CO or CO2, and CoA. Various
roles for CODH in acetate synthesis were suggested, in-
cluding reduction of an electron carrier or enzyme pros-
thetic group involved in CO2 reduction to acetate (Diekert
& Thauer, 1978) and formation of an enzyme-bound
[HCOOH] group from pyruvate (Drake et al., 1981;
Pezacka & Wood, 1984) or CO (Hu et al., 1982). For-
mation of the C C bond of the acetyl moiety of acetate
was assumed to occur at the cobalt center of a corrinoid or a
corrinoid protein. Reasons for this have been summarized
(Ragsdale, 1991) and, at this time, the major controversy
was whether the synthesis occurred via an acetylcobalt,
acetoxycobalt, or a carboxymethylcobalt intermediate.

When Harold Drake was a postdoctor with H. G. Wood,
he discovered that a partially purified enzyme fraction
catalyzed a remarkable reaction (Equation (6)) in which
acetyl-CoA labeled in the carbonyl group became nonra-
dioactive when it was incubated with CO (Hu et al., 1982).
This isotope exchange reaction between CO and the car-
bonyl group of acetyl-CoA offered a simpler system for
studying acetyl-CoA synthesis than the entire synthesis
reaction, which at the time required five components that
catalyzed synthesis of acetyl-CoA from pyruvate, methyl-
tetrahydrofolate, and CoA (Drake et al., 1981), as shown
in Figure 1. In the exchange reaction, acetyl-CoA must

be disassembled by breakage of the methyl-carbonyl and
carbonyl-SCoA bonds and then reassembled, which might
involve only the single unknown component—the syn-
thase itself. Based on the dogma of the time, as men-
tioned above, it was expected that the corrinoid protein,
recently isolated in Wood’s lab (Hu et al., 1984), would
be required for this reaction, since it had been assumed
to be the catalyst on which the methyl and acetyl group
are assembled. However, the purified CODH was the only
catalyst required (Ragsdale & Wood, 1985). Since there
were no acceptors of the methyl, CO, or CoA groups of
acetyl-CoA in the reaction mixture other than CODH, it
was recognized that the synthesis and assembly of acetyl-
CoA occur on CODH, that the role of the CFeSP was to
transfer the methyl group from methyltetrahydrofolate to
CODH, and that a more appropriate name for the enzyme
that catalyzes the synthesis of acetyl-CoA from CO, the
methyl donor, and CoA is acetyl-CoA synthase (Ragsdale
& Wood, 1985). Several enzyme-bound organometallic in-
termediates (M-CO, M-methyl, M-acetyl) were also pro-
posed. What was not clear was whether CODH and ACS
activities were catalyzed by the same or by separate active
sites (see below). In summary, as described below, it now
appears that the assembly of acetyl-CoA does indeed oc-
cur on ACS and that the assembly process occurs on metal
centers involving organometallic bonds.

CO + CH3−14CO-SCoA →14CO + CH3 CO SCoA
[6]

The CO Oxidation Catalysts—CODHs

There are three classes of CODH: the Mo-CODH, the Ni-
CODH, and the Ni-CODH/ACS.

Mo-CODH. Although the midpoint reduction poten-
tial for the CO2/CO couple (−558 mV, pH 7.0) is very
negative, the best electron acceptors for the Mo-CODH
have midpoint potentials between +0.011 V and 0.043 V,
which contrasts with the Ni-CODHs that reduce a variety
of high- and low-potential electron acceptors. The CODHs
from carboxydotrophs also can oxidize NADH, an activ-
ity associated with all known Mo hydroxylases. Unlike the
Ni-containing CODHs, the Mo enzymes are not oxygen
sensitive.

The mesophilic enzyme from Oligotropha carboxydo-
vorans and the thermophilic enzyme from Oligotropha
thermocarboxydovorans have similar molecular masses
(230,000–310,000) and (αβγ )2 structures (Meyer et al.,
1986). The carboxydotrophic CODH is encoded by
plasmid-borne genes (Black et al., 1990; Hugendieck &
Meyer, 1992; Meyer et al., 1990) that have been cloned
and sequenced (Pearson et al., 1994; Schubel et al., 1995).
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FIG. 6. The active site of the Mo-CODH. MCD is molybdopterin cytosine dinucleotide.

The active site contains a Cu linked to a Mo-pterin, molyb-
dopterin cytosine dinucleotide (MCD) (Figure 6) (Gnida
et al., 2003; Johnson et al., 1990). It was thought that Se
was present in the active site, even based on the first crys-
tal structure of the enzyme (Dobbek et al., 1999); however
this has been disproven (Dobbek et al., 2002; Gnida et al.,
2003). These CODHs also contain 2 mol of FAD and 8
Fe and 8 acid-labile sulfide, which are present as [2Fe-2S]
centers (Bray et al., 1983) and are involved in electron
transfer to the catalytic Mo-pterin center (Meyer et al.,
1993). Evidence that Mo is at the active site of CO bind-
ing is based on inhibition of enzyme activity by methanol,
which traps Mo in the V state, the requirement of Mo for
growth on CO, but not for heterotrophic growth, and in-
hibition of CO-dependent growth by the Mo antagonist,
tungstate (Meyer & Schlegel, 1983). Meyer recently pro-
posed that CO binds to the Cu site (Gnida et al., 2003).

The Ni-CODHs. The CODHs from R. rubrum, C. hy-
drogenoformans, and M. thermoacetica have been most
extensively studied, and structures are known for each of
these proteins. The structures of the three enzymes are
very similar, and all ligands at the active site, as well as
some residues proposed to facilitate acid-base chemistry
at the active site, are conserved (Table 1). The R. rubrum

and C. hydrogenoformans CODHs offer the advantage that
they lack the ACS subunit, allowing focus on CODH alone.
In addition, for R. rubrum a Ni-deficient protein contain-
ing all the Fe sites in the holoenzyme has been isolated
(Ensign et al., 1989).

The CODH mechanism proposed here (Figure 7) and
discussed in detail below is analogous to that of the water-
gas shift reaction (Figure 8). The individual steps are dis-
cussed below. The key common intermediates include a
metal-bound carbonyl, a metal bound hydroxide ion, and
a metal carboxylate formed by attack of the M-OH on
M-CO. Elimination of CO2 either leaves a metal-hydride
or a two-electron-reduced metal center and a proton. In
the CODH mechanism, It is proposed that the metal cen-
ter becomes reduced by two electrons; however, CODHs
have a weak CO-dependent hydrogen evolution activity
that would be consistent with a metal-hydride interme-
diate (Bhatnagar et al., 1987; Menon & Ragsdale, 1996;
Santiago & Meyer, 1996b). Regardless, the key difference
between the CODH mechanism and the water gas reaction
is that, in the enzyme, electron transfer is very rapid rela-
tive to H2 evolution because of the placement of the B and
D clusters as electron acceptors, like a wire, between the
C-cluster and the site at which external electron carriers
bind.
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TABLE 1
Key amino acid residues among the CODHs

Organism* (acc #) B-Cluster D-Cluster C-Cluster A-Cluster

A. Ligands to the metal clusters in CODH and CODH/ACS
Rr (1JQK) C50, C53, C58, C72 C41, C49 C300, C338, H265, C451,

C481, C531
Ch (1JJY) C48, C51, C56, C70 C39, C47 C295, C333, H261, C446,

C476, C526
Mt (1OAO,1MJG) C68, C71, C76, C90 C59, C67 C317, C355, H283, C470,

C500, C550
FeS: C506, C509, C518,
C528 NiP: C509, C595, C597
NiD: S of C595, C597 &

backbone N of G596, C597

Organism* (acc #) Histidine tunnel Acid base chemistry

B. Potential catalytic residues for CO oxidation
Rr (1JQK) H95, H98, H101 K568, H95, D223, W575
Ch (1JJY) H93, H96, H99, H102 K563, H93, D219, W570
Mt (1OAO, 1MJG) H113, H116, H119, H122 K587, H113, D241, W594

∗Rr, R. rubrum; Ch, C. hydrogenoformans CODHII; Mt, M. thermoacetica.

FIG. 7. Proposed CODH mechanism. Cred1, Cint, and Cred2 are different states of the C Cluster. Cox, which is not shown, is a
diamagnetic state (Ni2+-Fe3+) that requires 1 electron reduction to the active Cred1 state.
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FIG. 8. The water-gas shift reaction, an organometallic reac-
tion sequence.

Structure of Ni-CODH. The X-ray crystal structure of
CODH (Darnault et al., 2003; Dobbek et al., 2001; Doukov
et al., 2002; Drennan et al., 2001) reveals a
mushroom-shaped homodimeric enzyme containing five
metal clusters (Clusters B, C, and D), as shown in the cen-
ter of this figure of the CODH/ACS from M. thermoacetica
(Figure 9). In this bifunctional enzyme, the CODH sub-
units (cyan and blue) contain the catalytic site of CO ox-
idation (the C-Cluster) and the redox centers (Clusters B
and D) that transfer electrons to and from the C-Cluster.
The orange and green ACS subunits at the periphery are
discussed later. Buried 18 Å below the surface in each
CODH subunit is a C-Cluster, which is a Ni-4Fe-5S (or
Ni-4Fe-4S) cluster that can be viewed as a [3Fe-4S] clus-
ter bridged to a heterobinuclear NiFe cluster. Rees (2002)

FIG. 9. CODH/ACS structure. The purple and cornflower blue subunits in the center are ribbon drawings of CODH. The metal
clusters are shown as spheres and labeled. The orange and forest green subunits at the periphery are ACS. C506 of ACS was
identified as a site for interaction with the CFeSP. Residues 229–239 of ACS were identified as a site that interacts with ferredoxin.
Trp418 of ACS was shown to interact with CoA. Generated using Chimera from 1MSG.

noted that the structural motif for binding the C-Cluster, a
four-stranded, parallel β-sheet surrounded by α-helices, is
also found in other complex FeS metalloclusters, like nitro-
genase and the Fe-only hydrogenase. The protein ligands
to these clusters are found in loops positioned between
two β strands. Converging just above the Ni center in the
C-Cluster are a hydrophobic channel, proposed to deliver
CO to the Ni center, and a solvent channel containing over
40 water molecules to deliver the other substrate, water.

Electrons generated during CO oxidation are
transferred to a wire consisting of the B- and the D-
Clusters, as shown in the CODH/ACS structure. While
each CODH subunit contains a B-Cluster, the D-Cluster
is shared by the two CODH subunits, similar to the FeS
cluster in the iron protein of nitrogenase. Interestingly, it
is the B-Cluster of the adjacent subunit that is suitably po-
sitioned to mediate the electron transfer between the C
and D Clusters. The D Cluster, which is nearest to the
molecular surface, is likely to mediate electron transfer
between CODH and the terminal electron acceptor (ferre-
doxin, flavodoxin, etc.). The reduced electron acceptors
then couple to other energy, requiring cellular processes.

The same sequence of reactions just described run in re-
verse in CODH/ACS, which functions to convert CO2 to
acetyl-CoA, i.e., here the CODH functions to produce CO,
water from protons, and CO2. Although the alpha carbon
backbone of the CODH subunits from M. thermoacetica,
R. rubrum, and C. hydrogenoformans overlay with a 0.8–
1.0 Å root-mean-square deviation, two key alterations in
CODH have occurred in the CODH/ACS class of pro-
teins. It appears that the CO oxidation activity has been
attenuated, with specific activities of 20,000 U/mg (per
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monomeric unit, kcat of ∼22,000 s−1) in the CODH-only
versus 600 U/mg (per heterodimeric unit, kcat ∼ 1500 s−1)
in CODH/ACS. Furthermore, the hydrophobic channel de-
scribed above has undergone a change, perhaps a redirec-
tion, as a 140 Å leak-free channel is carved into the ACS
subunit to deliver CO generated at the CODH-active site
to the A-Cluster (described in detail below).

Based on spectroscopic studies of CODH, the C-Cluster
was interpreted to contain a high spin (S = 1) Ni2+ site
connected through a bridging ligand to a [4Fe-4S]2+/1+
cluster (Hu et al., 1996). The inability to detect a Ni-Fe
interaction by X-ray absorption spectroscopy (XAS) was
a major reason for dismissing the possibility that Ni could
be part of the cubane (Tan et al., 1992). However, the
high resolution (1.6 Å) X-ray structure of the as-isolated
CODH from C. hydrogenoformans (Dobbek et al., 2001)
revealed that the Ni ion is indeed incorporated in a NiFe4S4
cubane cluster, coordinated by four S atoms in a slightly
distorted square planar geometry, and bridged to four Fe
atoms through inorganic sulfide ligands with Ni and Fe
distances ranging from 2.8 to 3.7 Å (Figure 10). In the
2.8 Å structure of R. rubrum CODH (Drennan et al., 2001)
and the 1.9 Å structure of CODH/ACS (T.I. Doukov, C.L.
Drennan, J. Seravalli, and S.W. Ragsdale, unpublished re-
sults; Doukov et al., 2002), the Ni site in the C-Cluster also
is part of the cube and adopts a distorted five-coordinate

FIG. 10. Comparison of the C-Cluster structures of C. hydrogenoformans (left) and R. rubrum (right). Reprinted with permission
from Gu et al., 2004.

geometry with 4 S and another unidentified ligand, and the
Ni and Fe distances vary from 2.6 to 2.8 Å.

XAS of the C. hydrogenoformans CODH was used to
assess these apparent discrepancies in ligand binding and
Ni-Fe distances (Gu et al., 2004). The X-ray absorption
K-edge energy (8340 eV) is consistent with a Ni2+ as-
signment and, upon reduction with CO, the Ni K-edge
changes only slightly, implying that the Ni remains in (or
quickly returns to) the 2+ state upon reduction (Gu et al.,
2004). The Ni extended X-ray absorption fine structure
(EXAFS) spectrum of the as-isolated protein can be sim-
ulated with 4 Ni-S interactions at 2.20 Å without a Ni-Fe
interaction. Simulation of the XAS spectra according to
the crystal structure of the dithionite-treated enzymes in-
dicates that the Ni-Fe vector was not detected by XAS
because the distances are long and because heterogeneity
in Ni-Fe vectors resulted in a destructive interference that
veiled this interaction. Thus, the XAS-derived structure of
the C-Cluster in the as-isolated enzyme is similar to the
crystal structure of the dithionite-treated enzyme (Dobbek
et al., 2001). When CODH is treated with CO or the strong
reductant Ti(III)citrate, the Ni site becomes more tetrahe-
dral as the average Ni-S distance expands to 2.25 Å and
a new strong feature appears at 2.7 Å (see arrow) that is
consistent with a Ni-Fe interaction. The changes between
the two forms suggest that CO treatment causes the Ni
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in the C-Cluster to move ∼1 Å (shown by the red ar-
row), adopting a more tetrahedral geometry. These results
(Gu et al., 2004) rationalize some of the apparent differ-
ences between the crystal structures of the C. hydrogeno-
formans (Dobbek et al., 2001) and the R. rubrum (Drennan
et al., 2001) proteins. It is unclear why the XAS spectra
of as-isolated enzyme match the crystal structure of the
dithionite-treated enzyme; perhaps the dithionite, an un-
stable reductant, underwent oxidation during the crystal-
lization procedure.

Substrate access and binding to the active site. The
first step in the CODH reaction is the binding of substrates,
CO and H2O or CO2 and protons. Dobbek et al. (2001) de-
scribed a hydrophobic CO channel in the COOH-terminal
domain of ACS and a hydrophilic, positively charged water
channel that connects the surface and the C-Cluster in the
C. hydrogenoformans CODH II (described above in the
structure section).

An open coordination site above Ni in the C-Cluster
was proposed to be the site of CO binding (Dobbek et al.,
2001; Drennan et al., 2001). This hypothesis is consistent
with recent infrared (IR) studies of the M. thermoacetica
CODH-CO complex in which multiple IR bands at 2078,
2044, 1970, 1959, and 1901 cm−1 were observed and at-
tributed to Ni-CO in different states of the C-Cluster (see
Figure 16 below; Chen et al., 2003). All IR bands attributed
to M-CO species disappear in a time-dependent fashion
as bands for metal-carboxylates (1724 and 1741 cm−1)
and CO2 (2278 cm−1in the 13CO sample) appear, which
is consistent with enzyme-catalyzed CO oxidation dur-
ing the IR experiments. No M-CO bands are detected in
as-isolated CODH/ACS, suggesting that, unlike the NiFe
(Bagley et al., 1995; Happe et al., 1997) or Fe-only (Chen
et al., 2002) hydrogenases, neither CODH nor ACS con-
tain intrinsic M-CO ligands.

Catalysis of CO oxidation. What is the mechanism by
which an enzyme like the C. hydrogenoformans CODH
can catalyze the oxidation of CO to CO2 with a turnover
number of 39,000 mol CO per mol enzyme per second
and a kcat/Km of over 109 M−1s−1 (Svetlitchnyi et al.,
2001)? Furthermore, these enzymes can catalyze the re-
duction of CO2 to CO with a turnover number of 10 s−1

(Kumar et al., 1994) without imposing an overpotential
(a potential above that required to reach ox/red equilib-
rium), while the catalysts used for industrial CO2 activa-
tion and reduction require an overpotential of about a volt.
The C-cluster of CODH is the active site for the oxida-
tion of CO to CO2. This conclusion is based on rapid ki-
netic studies, which show that the electron paramagnetic
resonance (EPR) spectra of the C-Cluster change from
the Cred1 to the Cred2 states (below) at rates commensu-
rate with the rate of CO oxidation (Kumar et al., 1993).
In addition, cyanide, which is a competitive inhibitor of

CO oxidation with respect to CO, binds specifically to the
C-Cluster (Anderson et al., 1993).

As shown in Figure 7, the catalytic cycle involves two
half reactions. The first involves the chemistry of CO ox-
idation and reduction of the metal clusters (B, C, and D).
The second half of the cycle is electron transfer from the
reduced enzyme (Cred1, Bred, Dred) to ferredoxin. The C-
Cluster has four redox states: Cox, Cred1, Cint, and Cred2.
Cred1 and Cred2 can be observed by EPR spectroscopy.
The midpoint potential of the Cox/Cred1 couple is approxi-
mately −200 mV, whereas that for the formation of Cred2 is
∼−530 mV (Lindahl et al., 1990a). It is not known whether
Cred2 is at the same redox state as Cred1 or is two-electrons
more reduced. Cred1 appears to be the state that reacts with
CO, since it disappears at the rate that Cred2 is formed
(Kumar et al., 1993) and undergoes redox changes at a
potential that matches that for catalysis (Feng & Lindahl,
2004). Earlier experiments had indicated a mismatch be-
tween the potentials for C-Cluster reduction and catalysis
(Heo et al., 2001a, 2001b). The Cred1 state, which has a
net electronic spin of 1/2 since it exhibits an EPR spectrum
in the g = 2.0 region, is described as a [3Fe-4S]1+ cluster
bridged to a binuclear Ni2+/Fe2+ site. Another possibility
is that the 3Fe cluster has a net 1- core charge (Lindahl,
2002). Apparently, as described below, the Cred2 state also
can bind CO (Seravalli et al., 1997).

Figure 7 shows CO and water binding to CODH and,
based on electron nuclear double resonance (ENDOR)
studies, it is likely that the water molecule binds to a
metal center, presumably Fe (DeRose et al., 1998). The
pKa of bound water would be significantly lowered and
facilitate formation of an active hydroxide, as has been
shown for a number of hydrolases, such as carbonic an-
hydrase (Bertini & Luchinat, 1994). A similar mechanism
accounts for activation of metal-bound thiolates in methyl-
transferases (Gencic et al., 2001; Matthews & Goulding,
1997; Warthen et al., 2001).The active metal-hydroxide is
then proposed to attack the M-CO complex. Several basic
residues near the C-Cluster, including Lys563, His93, and
His261, and several histidine residues were proposed to
participate in these acid-base reactions (Figure 11)
(Dobbek et al., 2001; Drennan et al., 2001). The His
residues are located on sequential turns of a helix, form-
ing a His tunnel that begins near the C-Cluster and leads
to the surface of the protein (shown in gold mesh). The
His tunnel is proposed to deliver protons that are liberated
during the reaction to the solvent.

Conversion of the metal-carboxylate to CO2 would re-
duce the C-Cluster by two electrons and form the Cred2
state, which is represented here as a 3Fe cluster in the 1-
state and Ni and Fe still in the 2+ states. A Ni0 state has
also been considered; in this case, the 3Fe cluster would not
undergo redox changes (Lindahl, 2002). It is considered
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FIG. 11. Cluster C and potential acid base chemistry. Fe, S, and Ni atoms are colored orange, yellow, and cyan, respectively. The
surface from H99 to H102 is shown as gold mesh. From 1JJY using Chimera. The numbering is based on the C. hydrogenoformans
sequence.

that reduction of the B and D clusters would occur one
electron at a time, which would leave a diamagnetic Cint
state as an intermediate before Cred1 is reformed.

The catalytic cycle involves two half reactions. The first
involves the chemistry of CO oxidation and reduction of
the metal clusters (B, C, and D). The second half of the
cycle is electron transfer from the reduced enzyme (Cred1,
Bred, Dred) to ferredoxin. Cluster C of CODH/ACS un-
dergoes changes in its EPR signal as it binds CO at near
diffusion-controlled rates (k = 2 × 108 M−1s−1) and de-
livers electrons to Cluster B (3,000 s−1) at rates that are
catalytically relevant for CO oxidation (kcat = 2000 s−1

and kcat/KCO
m is 2 × 107 M−1 s−1 at 55◦C; Kumar et al.,

1993). At high CO concentrations, the rate-limiting step in
CO oxidation is the second half reaction, oxidation of the
reduced enzyme by the electron acceptor; whereas at low
CO concentrations, it is the intramolecular electron trans-
fer from the C-Cluster to the B-Cluster (Kumar et al., 1993;
Seravalli et al., 1997). The intramolecular electron transfer
reaction is also rate limiting when CODH is rapidly mixed
with CO during single turnover kinetics in the absence of
electron carriers.

The wire. Oxidation of CO is coupled to the one-
electron reduction of the B-Cluster and another redox cen-
ter in the protein, which has been called X and may be the
D-Cluster. So far, redox changes in the D-Cluster have not
been observed. The B- and D-Clusters form an intramolec-
ular wire that connects the catalytic C-Cluster to external

electron acceptors/donors (Figure 12). The distance be-
tween the nearest Fe atoms of the B- and C-Clusters is
ca. 11 Å, while only 8 Å separate the nearest sulfur atoms
of cysteine residues 470 and 71. Similarly, between the

FIG. 12. Metal clusters in CODH. The loops on which the
amino acid side chains that ligate the clusters are colored sepa-
rately to indicate that electron transfer must occur between the
C-Cluster of one subunit and the B-Cluster of the other. The dis-
tance between the C and B-Clusters of a single subunit is 28 Å,
which is too long for effective electron transfer.
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nearest sulfur atoms of the B- and D-Clusters, the dis-
tance is only 7 Å (sidechains of Cys67 and Cys68), while
the nearest Fe atoms are ca. 11 Å apart. These distances
would allow rapid electron transfer (Page et al., 1999).
The reduction of “X” is required to balance the electron
transfer reaction and to explain the rapid reaction kinetics
and the potentiometric titrations of CODH with CO and
other reductants (Seravalli et al., 2002). Thus, at the end
of this reductive half of the catalytic cycle, CODH has
undergone a four-electron reduction. Closure of the cat-
alytic cycle involves coupling the intramolecular wire to
an external electron carrier protein.

Cluster D is partially surface exposed and is in suitable
position to mediate electron transfer between the B-Cluster
and the many external mediators to which CODH can cou-
ple. This enzyme can efficiently transfer electrons to rubre-
doxin, methylene blue, a 4Fe and 8Fe ferredoxin, benzyl
viologen, flavodoxin, and methyl viologen, with the rates
decreasing in that order (Ragsdale et al., 1983a). As an
electron acceptor, CODH efficiently accepts electrons di-
rectly from pyruvate ferredoxin oxidoreductase (kcat/Km
= 7 × 107 M−1 s−1, similar to the specificity for ferre-
doxin; Menon & Ragsdale, 1996a). It also donates elec-
trons to an Fe-only hydrogenase (Ragsdale & Ljungdahl,
1984a), the corrinoid iron-sulfur protein (Ragsdale et al.,
1987), low-potential artificial acceptors like triquat, and
very high-potential acceptors like cytochrome c.

When CO is produced from CO2 by CODH/ACS by
reversal of these reaction steps, a reduced electron donor
transfers electrons to Clusters B and D, which reduce Clus-
ter C. The Cred2 state then undergoes oxidation, reducing
CO2 to CO.

CO CHANNELING

In CODH/ACS, the CO that is generated by the steps just
described is channeled to ACS for acetyl-CoA synthesis.

Gas Channels in Proteins

There are few examples of gas channels in proteins. Pro-
teins that have been proposed to transport ammonia
(Soupene et al., 2002a) and CO2 (Soupene et al., 2002b)
have been reported.

Gases can occupy any hydrophobic cavities in proteins.
NMR spectroscopy has been used to identify hydrophobic
cavities in lysozyme by measuring the dipole-dipole inter-
actions between water protons and the protons of several
gases (H2, CH4, ethylene, or cyclopropane; Otting et al.,
1997). Channels are also located in proteins by X-ray crys-
tallography (Schiltz et al., 2003). Hydrogenase and CODH
crystals have been treated with Xe under pressure and flash
frozen to locate the channels (Darnault et al., 2003; Montet
et al., 1997). The noble gas serves as a heavy atom reporter
for the gas channel and can be used to help in phasing of the

structure. Since any cavity in the protein can be occupied
by the gas, in proteins like hydrogenase and CODH/ACS
that use gases, the key issue appears to be directing the gas
to and from a particular active site and preventing it from
diffusing into nonproductive pathways.

Biochemical Evidence for a CO Channel

Biochemical results strongly indicate that in CODH/ACS,
CO derived from CO2 migrates from the C-Cluster through
a channel in the interior of the protein to the A-Cluster in
the ACS subunit (Figure 13) (Maynard & Lindahl, 1999;
Seravalli & Ragsdale, 2000). In one set of experiments,
the effect of unlabeled CO on incorporation of label from
14CO2 into acetyl-CoA was measured. If the CO is re-
leased from the protein before binding to the A-Cluster,
it would equilibrate with CO in solution and decrease the
incorporation of label from 14CO2. However, even sat-
urating levels of CO did not decrease the incorporation
of CO2-derived CO into the carbonyl group of acetyl-
CoA (Seravalli & Ragsdale, 2000). Furthermore, the rate
of acetyl-CoA synthesis from CO2, CH3-H4folate, and
CoA was significantly faster than the rate with CO, CH3-
H4folate, and CoA (Maynard & Lindahl, 1999). In addi-
tion, hemoglobin, which tightly binds CO, only partially
inhibits the synthesis of acetyl-CoA from CH3-H4folate,
CoA and pyruvate (Menon & Ragsdale, 1996a). Accord-
ingly, no inhibition by hemoglobin was observed in the
synthesis from CO2 (Maynard & Lindahl, 1999).
Hemoglobin and myoglobin also only partially inhibit the
exchange reaction between CO2 and acetyl-CoA (Seravalli
& Ragsdale, 2000).

These results provide strong evidence for the existence
of a CO channel between the C-Cluster in the CODH sub-
unit and the A-Cluster in the ACS subunit. It has been
proposed that this channel may be involved in synchro-
nizing cluster activities, increasing the local concentration
of CO at the A-cluster, and/or directing CO to a produc-
tive rather than inhibitory binding site on the A-cluster
(Doukov et al., 2002). Such a channel would tightly couple

FIG. 13. CO channel in CODH/ACS. This figure shows that
CO derived from CO2 during synthesis of acetyl-CoA does not
equilibrate with solvent, but remains sequestered within a chan-
nel that connects the C-Cluster in CODH to the A-Cluster in
ACS.



180 S. W. RAGSDALE

CO production and utilization and help explain why very
low levels of CO escape into the growth medium of ace-
togenic bacteria. Since CO is a rich electron donor, it is
important that microbes sequester the CO and ensure that
the energy devoted to the synthesis of CO is not lost. The
channel would also protect aerobic organisms that harbor
the microbes by preventing CO from escaping into solu-
tion and maintaining CO below toxic levels.

Atomic Resolution Structure of the Channel

A 67 Å hydrophobic channel that connects the A- and C-
Clusters was located using the program CAVENV
(Doukov et al., 2002). Since this channel connects the C-
and A-Clusters of both pairs of subunits, its total length is
∼138 Å. This channel has been observed by X-ray diffrac-
tion studies of Xe-pressurized crystals (Darnault et al.,
2003). Dobbek et al. (2001) had identified one end of
a hydrophobic channel just above the Ni site of the C-
Cluster of CODH. This would be the beginning of the CO
channel for the CODH/ACS. Recent Xe studies demon-
strate that the other end of the channel is within bond-
ing distance of the proximal Ni site of the A-Cluster (T.I.
Doukov, C.L. Drennan, J. Seravalli, and S.W. Ragsdale,
unpublished data).

As described below, there is a major conformational
change in ACS that exposes the A-Cluster to solvent,
which could compromise the integrity of the channel.
However, the open channel observed in one state (the
closed state, see below) of the enzyme is closed by move-
ment of a helix (residues 143–148 of the Mt enzyme) when
the A-Cluster is exposed to solvent (Darnault et al., 2003).

One might ask why nature has placed the A- and C-
Clusters so far apart. It seems that a CODH/ACS docking
site near the A-Cluster would make the channel unnec-
essary. Perhaps nature has placed the A-Cluster and C-
Cluster (or any of the CODH clusters) far enough apart that
oxidation of the A-Cluster is not feasible under physiolog-
ical conditions. This would isolate the A-Cluster from the
redox chemistry associated with CO oxidation and help
maintain the NiP site in its catalytically active reduced
form.

CO UTILIZATION: CELL CARBON FROM CO

ACS

ACS Structure
Overall structure of ACS. The orange and green ACS

subunits shown in Figure 9 consist of three domains that
are connected by long flexible loops. Residues 1–312 in
the first domain form a Rossman (six-stranded α/β) fold
and form the interface with CODH. Interestingly, this do-
main is missing in the methanogenic cdhC (the beta sub-
unit), which contains the A-Cluster. This domain also con-

tains a ferredoxin-binding region (shown in Figure 9 with
the purple surface), which was identified by crosslink-
ing the ferredoxin-CODH/ACS complex, cleaving with
cyanogen bromide, and sequencing (Shanmugasundaram
& Wood, 1992). Residues in the Fd-binding domain are
ca. 10 Å from the A-Cluster; thus, a ferredoxin–ACS com-
plex could be involved in activation of the A-Cluster and
in any internal electron transfer reactions that occur during
the ACS reaction. The second domain (residues 313–478)
contains Trp418 close to six Arg residues. Based on two
experiments, Arg residues have been implicated in binding
CoA. The fluorescence of Trp418 is quenched upon CoA
binding (Shanmugasundaram et al., 1988), and phenylgly-
oxal, which is a rather specific Arg modification reagent,
inhibits CoA binding (Ragsdale & Wood, 1985). The third
domain (residues 479–729) contains the ligands to the A-
Cluster (see Table 1). Cys506 was identified to form a
disulfide bond with a thiol group on the CFeSP (Shanmu-
gasundaram et al., 1993).

Although all the CODH structures are highly similar,
the ACS subunits in the two M. thermoacetica crystal
structures exhibit different conformations. In Figure 9, the
orange subunit is in an open conformation in which the
A-Cluster is more solvent exposed, while the green ACS
subunit is in the closed conformation. Except for the po-
sition of one helix, the N-terminal domains of the open
and closed structures overlay; however, the second and
third domains in the two conformations are rotated as a
rigid body by ca. 50◦. This rotation explains two impor-
tant aspects of the ACS mechanism. The first major issue
relates to the need to interface ACS with the CFeSP. The
methyl group transfer from the CH3 Co-corrinoid to the
Ni of the A-cluster appears to occur by an SN2 mecha-
nism (Menon & Ragsdale, 1998, 1999), which requires
the Co-CH3 to be positioned directly above the NiP in the
A-Cluster. In the closed state, there is insufficient space for
B12 or the CFeSP to interact with the A-Cluster. However,
in the open state, the exposed A-Cluster is more accessi-
ble to allow docking of the CFeSP and facilitate transfer
of the methyl group from Co to the A-Cluster. Thus, a
major conformational change appears to be coordinated
with each catalytic cycle. However, solvent exposure of
the A-Cluster to solvent presents a problem: CO must be
retained in the channel until it binds to the metal site to un-
dergo condensation with the methyl and CoA groups. This
is accomplished by a closure of the CO channel when the
protein adopts the open conformation by the movement of
a helix in the N-terminal domain. When ACS readopts the
closed conformation, this helix moves again to open the
channel.

Active site structure—the A-Cluster. This active cen-
ter of ACS, the A-Cluster was the first published example
of a NiFeS cluster (Ragsdale et al., 1985). It consists of a
[4Fe-4S] cluster bridged to a Ni site (Nip) that is thiolate
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FIG. 14. A-Cluster of ACS. Nid and Nip are the distal and proximal nickels. Fe atoms are shown in orange-red, sulfurs in yellow,
Ni in green. The loops contain the side chains that serve as ligands. This closeup is from the green subunit shown in the overall
CODH/ACS structure and was generated using Chimera from 1OAO after replacing Zn with Ni.

bridged to another Ni ion in a thiolato- and carboxamido-
type N2S2 coordination environment (Figure 14, Table 1)
(Doukov et al., 2002). Thus, one can describe the A-
Cluster as a binuclear NiNi center bridged to a [4Fe4S]
cluster. A proposal that Cu is a component of active ACS
(Doukov et al., 2002; Seravalli et al., 2003), met with im-
mediate criticism (Bramlett et al., 2003; Darnault et al.,
2003; Gencic & Grahame, 2003; Hausinger, 2003) based
first on studies on the methanogenic ACS (ACDS) from
the Grahame laboratory (Gencic & Grahame, 2003). Metal
analyses on recombinant and native methanogen ACDS β
subunit showed insignificant levels of copper, and an Fe:Ni
ratio of 2:1 consistent with 2Ni per [4Fe-4S] cluster. Using
apo-ACDS β subunit, Grahame and Gencic showed that
a reconstituted Ni–Ni form of the A-Cluster had activity,
while a Cu–Cu form did not. Based on metal reconstitution
experiments (using Cu2+ and Ni) with the acetogenic en-
zyme, Fontecilla-Camps and Lindahl concluded that the
CuNi form of ACS is inactive and the NiNi form is ac-
tive (Bramlett et al., 2003). However, the above experi-
ments were not unambiguous since activity of the CuNi
methanogenic enzyme was not tested (Gencic & Grahame,
2003) and, with the acetogenic CODH/ACS, added Cu2+
inhibited both ACS activity of the A-Cluster and CODH
activity at the C-Cluster (Bramlett et al., 2003). The most
serious questions about the activity of the CuNi form of
the enzyme were based on the demonstration that removal
of Ni by o-phenanthroline (ophen) results in loss of ACS
activity and that readdition of Ni restores activity (Russell
et al., 1998; Shin & Lindahl, 1992); however, since the
presence of Cu in CODH/ACS was unknown at that time,
the effect of Cu addition was not addressed.

Determining unambiguously whether the CuNi or the
NiNi enzyme is active proved to be challenging. The ini-
tial proposal that Cu was an active component of ACS
was based on a positive correlation between Cu and ac-
tivity with samples, where metal occupancy was in the

range 1.6–2.3 Ni per αβ and 0.25–0.96 Cu per αβ unit
(Seravalli et al., 2003). This correlation relied on the as-
sumption of uniform occupancy of Fe and Ni in the other
metal sites in this protein, with 17 metal sites per αβ unit.
However, a negative correlation was found when using a
larger number of samples with a larger range in metal
occupancy: 1.6–2.8 Ni per αβ and 0.2–1.1 Cu per αβ
(Seravalli et al., 2004). Furthermore, a positive correla-
tion with Ni (including a slope of 0.5 for the NiFeC sig-
nal intensity versus Ni, indicating both Nip and Nid are
required) and a negative correlation with Cu strongly in-
dicaties that the CuNi enzyme is inactive and the NiNi is
active (Seravalli et al., 2004). Similar results were recently
published from the Meyer and Huber groups (Svetlitchnyi
et al., 2004). Furthermore, a protocol to generate nearly
homogeneous preparations of ACS with a NiFeC signal
intensity of ∼0.8 spins per mol was achieved by remov-
ing Cu with o-phenanthroline and replacing the Cu with
Ni (Seravalli et al., 2004). In addition, only Ni, not Cu1+
(which was shown by XAS studies to bind to the Mp site),
restores activity in o-phenanthroline–treated ACS.

Recent DFT calculations (described below) also indi-
cate that a paramagnetic state of the A-Cluster, called the
NiFeC species, could derive from the NiNi, but not the
CuNi form of the enzyme (Schenker & Brunold, 2003).
Multifrequency EPR studies also are inconsistent with
the NiFeC EPR signal arising from the CuNi enzyme
(Seravalli et al., 2004).

To summarize, it now seems clear that the NiNi form
of ACS is active and that the CuNi and the ZnNi forms
are not. The apparent vulnerability of the proximal metal
site in the A-Cluster to substitution with different metals
appears to underlie the heterogeneity observed in sam-
ples that has confounded studies of CODH/ACS for many
years. Development of a method to replace zinc with Ni
would likely produce absolutely homogeneous and fully
active ACS.
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The FeS cluster component of the A-Cluster is coor-
dinated by four Cys residues, Cys506, Cys509, Cys518,
and Cys528, resembling typical [4Fe-4S] clusters found
in clostridial ferredoxins, in agreement with EPR
(Ragsdale et al., 1985), Mössbauer (Lindahl et al., 1990b;
Russell et al., 1998), and ENDOR (Fan et al., 1991) spec-
troscopic data. Cys509 bridges the [4Fe-4S] cluster and
the binuclear site, similar to the Fe-only hydrogenases in
which a [4Fe-4S] and a binuclear Fe site are bridged by a
Cys residue (Nicolet et al., 2000; Peters et al., 1998). The
proximal Ni, i.e., the one closest to the [4Fe-4S] cluster, is
coordinated by Cys595, Cys597, and the bridging Cys509.
The distal Ni atom has square planar geometry and is co-
ordinated by the sidechains of Cys595 and Cys597 and by
two backbone N atoms of Gly596 and Cys597. In one ACS
structure, Cu was in high occupancy, forming a binuclear
CuNi center (Doukov et al., 2002). In another structure of
the same enzyme from the same source (M. thermoacetica)
containing two ACS molecules in the asymmetric unit, Ni
replaced Cu in one A-Cluster (the NiNi enzyme) and Zn
was present in the other (ZnNi) (Darnault et al., 2003).

The binuclear nickel active site of the heterologously
expressed methanogenic ACS (ACDS, the beta subunit of
the five-subunit complex) was studied by XAS and X-
ray MCD (Funk et al., 2004; Gu et al., 2003). Two dis-
tinct Ni environments were observed: one Ni appears to be
square planar, presumably Nid, and the other tetrahedral
or distorted tetrahedral (apparently Nip), which is consis-
tent with the crystal structures. In the as-isolated enzyme,
planar Nid is low spin and Nip is high spin. Reduction
with Ti3+-citrate or CO in the presence of Ti3+-citrate
appears to reduce some of the Nip from Ni2+ to Ni1+
and a portion of the [4Fe-4S] cluster from the 2+ to the
all-ferrous 0+ state. In the CO/Ti3+-treated sample, the
tetrahedral high-spin Ni2+ (Nip) appeared to convert to
low-spin Ni2+ (Funk et al., 2004), and a feature devel-
oped at 2.7 Å that was assigned to a Ni–Fe interaction (Gu
et al., 2003). Under all redox conditions, a 2.95 Å vector,
assigned to a Ni–Ni interaction was observed. The X-ray
absorption near edge spectroscopy (XANES) spectra ap-
pear to be inconsistent, with a proposed Ni0 formulation in
any of the states studied. Since the XAS and X-ray MCD
studies did not find evidence for significant amounts of
Ni1+ in the CO-treated sample, it was concluded that re-
duction of the A-Cluster to form the NiFeC species local-
izes the radical primarily at a site other than Ni. However,
recent computational and spectroscopic studies, described
below, indicate that the NiFeC species contains Ni1+-CO
(Schenker & Brunold, 2003; Seravalli et al., 2004).

What is the electronic state of the active form of the NiNi
enzyme, which is responsible for an EPR signal called the
NiFeC signal? Recent Density Functional Theory (DFT)
calculations support a model that includes a [4Fe-4S]2+
cluster linked to Ni1+ at the Mp site, which is bridged to

a Ni2+ at the Md site (Schenker & Brunold, 2003). In this
model, the spin resides predominantly on the Ni1+, which
has an electronic spin, S = 1/2, since the other components
of the A-Cluster have net spins, S = 0. The NiFeC-eliciting
species is described as a [4Fe-4S]2+ (net S = 0) cluster
bridged to a Ni1+ (S = 1/2) at Mp that is bridged to square
planar Ni2+ (S = 0) at Md , with the spin predominantly on
the Ni1+. The carbonyl group of the NiFeC species also
has spin density based on the observation of 13CO hyper-
fine splittings (Ragsdale et al., 1983b, 1985). A bridging
carbonyl would be a mechanistically interesting possibil-
ity; however, the high C O vibrational frequency (1996
cm−1) clearly indicates a terminal CO bound to one metal
(Chen et al., 2003; Kumar & Ragsdale, 1992).

Catalysis: The Condenser of the CODH/ACS Machine.
ACS catalyzes the final steps of the Wood-Ljungdahl path-
way in which a methyl group, CO, and CoA are con-
densed to form acetyl-CoA at the A-Cluster of ACS (Fig-
ure 15) (also see Fontecilla-Camps and Ragsdale, 1999;
Seravalli et al., 1999). In the mechanistically related Mon-
santo industrial process, a rhodium complex catalyzes ac-
etate formation from methanol and CO in the presence of
HI through methyl-Rh, Rh CO, and acetyl-Rh organome-
tallic intermediates. There are three major controversial
issues in the ACS catalytic mechanism: (1) whether the
catalytic cycle occurs through diamagnetic or paramag-
netic intermediates (in Figure15, both the paramagnetic
and diamagnetic mechanisms are presented); (2) whether
the central nucleophilic species is a Ni0, Ni1+, or Ni2+
species; and (3) whether the first step in acetyl-CoA syn-
thesis is carbonylation or methylation (here I have pre-
sented carbonylation as the first step in both mechanisms).
These issues are addressed in a series of articles recently
published in the Journal for Biological Inorganic Chem-
istry (Brunold, 2004; Drennan et al., 2004; Lindahl, 2004;
Vobeda & Fontecilla-Camps, 2004).

As shown in Figure 15, a channel directs CO to the Nip
site of the A-Cluster of ACS (Doukov et al., 2002). CO is
shown as the first substrate to bind to Ni. In the paramag-
netic mechanism (upper figure), the NiFeC species (above)
is formed as the central intermediate. This metal-CO com-
plex has been observed by IR (Chen et al., 2003; Kumar
& Ragsdale, 1992) and EPR (Ragsdale et al., 1985) spec-
troscopy (as the NiFeC species) (Figure 16). The NiFeC
EPR signal has g values at 2.08 and 2.02, and exhibits
61Ni, 13C, and 57Fe hyperfine interactions (Fan et al., 1991;
Ragsdale et al., 1985). The NiFeC species has been demon-
strated to be a catalytically competent intermediate in
acetyl-CoA synthesis (Seravalli et al., 2002); in the upper
mechanism this paramagnetic Ni1+-CO intermediate is the
species that undergoes methylation. One complication of
the paramagnetic mechanism is that methylation of ACS
clearly generates a diamagnetic product (Barondeau &
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FIG. 15. Two proposed ACS mechanisms. Steps leading to the carbonyl group of acetyl-CoA are shown in blue, while steps
involved in forming the methyl group are shown in red. The top figure has been called the paramagnetic mechanism involving
the Ni1+-NiFeC species as a central intermediate. The bottom figure is the author’s interpretation of a version of the diamagnetic
mechanism, which includes a Ni0 state as the central intermediate. See the text for details.
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FIG. 16. Spectroscopy of the NiFeC species. Left: EPR spectrum of unlabeled CODH/ACS incubated with natural abundance
CO (top) compared with those of enzyme samples labeled with 61Ni or 57Fe or incubated with 13 CO (Ragsdale et al., 1985). Right:
IR spectra of CODH/ACS after treating with CO. The 1996 cm−1 band is from the A-Cluster and the others are from the C-Cluster
(modified from Chen et al., 2003).

Lindahl, 1997; Seravalli et al., 2002). Therefore, in the
paramagnetic mechanism, an internal electron transfer step
is proposed, which prior to, coincident with, or preceding
methylation generates methyl-Ni2+. This electron is re-
turned to the donor in the final stages of the catalytic cycle
as described below.

The lower scheme in Figure 15 describes a catalytic cy-
cle involving only diamagnetic intermediates (Barondeau
& Lindahl, 1997), which involves Ni0 as the key interme-
diate (Darnault et al., 2003). In this mechanistic proposal,
the paramagnetic NiFeC state is considered to be an in-
hibited form of the enzyme (Darnault et al., 2003; Tan
et al., 2002). The diamagnetic mechanism starts by re-
ductive activation of the enzyme to the Ni0 state, which
undergoes carbonylation to form a Ni0-CO complex that
is methylated by the methylated CFeSP to directly form
methyl-Ni2+.

There are chemical precedents supporting both Ni0 and
Ni1+ active sites. A model containing a binuclear Ni0-
Ni2+–active site similar to that observed in ACS was
shown to form a Ni0-(CO)2 complex (Linck et al., 2003).
However Ni0-carbonyls are well known and are not con-
sidered especially reactive. A Ni1+-CO complex with an
IR stretch (1995 cm−1) similar to that of the NiFeC species

(above, 1996 cm−1) has been recently characterized, (Craft
et al., 2003) and, as described below, methylation of a Ni1+
complex by a methyl-Co3+ complex, similar to the next
step in the ACS reaction sequence, has also been charac-
terized (Ram & Riordan, 1995; Ram et al., 1997). Recent
density functional calculations support a Ni0 mechanism
with methylation preceding carbonylation (Webster et al.,
2004) as well as a Ni1+ mechanism with the opposite bind-
ing sequence (Schenker & Brunold, 2003).

The next step in the ACS mechanism is methylation
of the A-Cluster by the methyl-Co3+ form of the CFeSP
(Seravalli et al., 2002). Based on rapid kinetic studies, this
reaction appears to occur by the SN2-type nucleophilic
attack of Nip on the methyl group of the methylated CFeSP
(CH3-Co3+) to generate methyl-Ni and Co1+ (Menon &
Ragsdale, 1998, 1999). This mechanism is reminiscent of
the reactions of cobalamin-dependent methyltransferases
like methionine synthase (Banerjee & Ragsdale, 2003;
Matthews, 2001) and is supported by stereochemical stud-
ies using a chiral methyl donor (Lebertz et al., 1987). This
transmethylation reaction is reversible and is linearly de-
pendent on methyl-CFeSP (forward reaction) or CFeSP
(back reaction), yielding second-order rate constants of
0.047 µM−1 s−1 (forward) and 0.4 µM−1 s−1 (reverse)
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with a Keq of 0.12 (Seravalli et al., 2002). In another set
of studies, when this reaction was modeled as a three-step
process, the methylation rate constant was 12 µM−1s−1

(forward) and the reverse rate constant was 2 µM−1 s−1

(Tan et al., 2003). Thus, the Ni1+ site on ACS appears to be
about as effective as Co1+-CFeSP as a methyl group accep-
tor. At low CO concentrations, formation of this interme-
diate is rate limiting in the overall pathway of acetyl-CoA
synthesis; however, at higher CO concentrations (which in-
hibit acetyl-CoA synthesis Maynard et al., 2001), methyl
transfer becomes rate limiting (Seravalli et al., 2002). It is
the methyl transfer step that is inhibited by CO, perhaps
by the binding of a second CO to the site of methylation
(Seravalli et al., 2002). What state of ACS is the methyl ac-
ceptor? Based on studies of the overall reaction sequence
of ACS by rapid kinetics, steady-state kinetic experiments
and kinetic simulations (Seravalli et al., 2002), the NiFeC
species is kinetically competent in the acetyl-CoA synthe-
sis catalytic cycle.

As described above in the ACS structure section, the
recent crystal structures provide strong evidence for ma-
jor conformational changes during this reaction. There
is evidence that the methyl group binds to the labile Ni
site of the A-Cluster (Barondeau & Lindahl, 1997; Shin
et al., 1993) that, based on XAS studies, appears to be Nip
(Seravalli et al., 2004). Kinetic and spectroscopic studies
indicate that this methyl transfer involves an SN2 reac-
tion (Menon & Ragsdale, 1999). Interestingly, in model
studies of the reaction between methyl-Co3+ (CH3-Co3+
dimethylglyoximate) and a Ni1+ macrocycle, transfer of
a methyl radical is favored over a methyl cation transfer.
Two equivalents of the Ni1+ complex were required, one
to reduce methyl-Co3+ to methyl-Co2+ and the other to
capture the methyl radical generated upon cleavage of the
methyl-Co2+ species (Ram & Riordan, 1995). Follow-up
experiments with these model reactions using radical traps
also support a methyl radical transfer reaction (Ram et al.,
1997). However, Martin and Finke (1990) pointed out that
for the enzymatic system, homolysis of the CH3-Co bond
could not occur because reduction of CH3-Co3+ requires
redox potentials (<−1 V) that are too low for physiologi-
cal electron donors.

The methyl transfer step as shown in Figure 15 includes
a one-electron shuttle, i.e., one electron is donated during
the methylation and an electron is lost after CoA binds.
Inclusion of this redox step in the ACS mechanism would
explain why reaction of the NiFeC species with the methy-
lated CFeSP generates a diamagnetic methyl-Ni2+ prod-
uct (Barondeau & Lindahl, 1997; Seravalli et al., 2002).
If a methyl-Ni3+ were generated, it would be EPR ac-
tive. Another reason that a methyl-Ni3+ species is not
favored is that it would be highly oxidizing and quite
reactive (Thauer, 1998). One obvious candidate for this
one-electron shuttle is the [4Fe-4S] subcomponent of the

A-Cluster, which is only a spectator in the two schemes
shown in Figure 15. Demonstration that this cluster under-
goes reduction at a slower rate than the methyl group is
transferred apparently rules out such a role for this cluster
(Tan et al., 2003); however, if the methylation and re-
duction were coupled, the rate of reduction of the cluster
could increase significantly. On the other hand, perhaps
it serves only as a conduit for electron transfer to the Ni.
Lindahl’s diamagnetic Ni0 mechanism avoids the need for
redox shuttling because reaction of a methyl cation wih
Ni0 would directly generate a diamagnetic CH3-Ni2+. The
significant stimulation of the CO/acetyl-CoA exchange re-
action, which does not involve net redox chemistry, by
ferredoxin and other one-electron carriers is considered to
support an internal electron transfer reaction during catal-
ysis (Ragsdale & Wood, 1985). The ferredoxin-binding
site shown in purple in the CODH/ACS structure is close
enough to participate in shuttling (donating and then re-
ceiving) one electron during this reaction.

Carbon–carbon bond formation, the next step in the
catalytic cycle, occurs by condensation of the methyl and
carbonyl groups to form an acetyl-metal species. There
is evidence that this intermediate was trapped in crystals
of CODH/ACS incubated in a solution containing high
concentrations of acetate (Doukov et al., 2002).

The final steps in the catalytic cycle involve binding
of CoA and thiolysis of the acetyl-metal bond. CoA ap-
pears to ligate to the proximal metal site in the A-Cluster,
based on the observation of a Se-Cu bond by EXAFS of
the CuNi form of CODH/ACS incubated with seleno-CoA
(Seravalli et al., 2003). In the diamagnetic mechanism, the
two electrons liberated during the thiolysis are used to re-
duce the Ni2+ back to catalytically active Ni0. In the para-
magnetic mechanism, one electron reduces Ni2+ back to
Ni1+ and the other is returned to the one-electron shuttle.

Thus, the Wood-Ljungdahl pathway appears to repre-
sent a prototypical bio-organometallic pathway involv-
ing, like the Monsanto process, methyl-metal, metal-CO,
and acetyl-metal intermediates. Interestingly, when ACS
undergoes reductive activation and binds CoA and the
methylated CFeSP, the rate of CO formation by CODH
and acetyl-CoA synthesis by ACS become synchronized
(Maynard & Lindahl, 2001). The structural transforma-
tions accompanying this transformation are not known,
but may relate to alterations in function of the CO channel
or the rate of the conformational change described above.
Uncovering how these active sites are coupled is an excit-
ing area for future research.

Other Wood-Ljungdahl Pathway Enzymes Required
for CO Utilization

The focus of this review so far has been on CODH and
CODH/ACS since these enzymes are key to CO
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metabolism. However, for organisms that use the Wood-
Ljungdahl pathway (Figure 1), a number of additional en-
zymes are required.

Conversion of CO2 to CH3-H4 folate. The methyl or
Eastern branch of this pathway (Figure 1) includes five en-
zymes required for catalyzing the synthesis of the methyl
group of CH3-H4folate from CO2 (Ljungdahl, 1986;
Ragsdale, 1991). These include formate dehydrogenase,
which converts CO2 to formate (Andreesen et al., 1973;
Ljungdahl & Andreesen, 1978). Then, formyl-H4 folate
synthetase catalyzes the ATP-dependent conversion of
formate to 10-formyl-H4folate (Brewer et al., 1970;
Lovell et al., 1990; Sun et al., 1969), which is conve-
rted by a cyclohydrolase to 5,10-methenyl-H4folate (Clark
& Ljungdahl, 1982). Next, a dehydrogenase reduces
methenyl- to 5,10-methylene-H4folate, (Ljungdahl et al.,
1980; Moore et al., 1974; O’Brien et al., 1973; Ragsdale &
Ljungdahl, 1984b) which is reduced to CH3-H4folate by
a reductase (Clark & Ljungdahl, 1984; Park et al., 1991).
Since these reactions were reviewed in 1991 (Ragsdale,
1991) and 2003 (Ragsdale, 2003a), it is unnecessary to
cover them here. A similar series of reactions is involved
in the conversion of formate to methyltetrahydropterin by
methanogens and these reactions also were recently re-
viewed (Ragsdale, 2003a).

Conversion of CH3-H4 folate to CH3-CFeSP. The
MeTr-catalyzed transfer of the methyl group of CH3-H4
folate to the CFeSP (Figure 17) also has been reviewed

FIG. 17. Methyl transfer to form the first organometallic in-
termediate in the Wood-Ljungdahl pathway. The Co1+ state of
the CFeSP, which is the active state, is in redox equilibrium with
Co2+, which requires reductive activation to reenter the catalytic
cycle.

recently (Banerjee & Ragsdale, 2003) and will only be
briefly covered here. In 1984, Hu et al. partially purified a
corrinoid-containing protein that accepts the methyl group
of CH3-H4folate to form methyl-cobamide (Hu et al.,
1984). This protein was then purified to homogeneity and,
because it was shown to contain an iron-sulfur cluster, was
named the corrinoid iron-sulfur protein (CFeSP) (Ragsdale
et al., 1987). The CFeSP accepts the N5 methyl group
of CH3-H4folate in a reaction catalyzed by methyltrans-
ferase (MeTr) (Drake et al., 1981) and then transfers this
methyl group to the A-Cluster on demethylated CODH/
ACS (above). This reaction initiates the carbonyl or West-
ern branch of the acetyl-CoA pathway. MeTr has been
purified to homogeneity (Drake et al., 1981), and its struc-
ture was determined by X-ray crystallography (Doukov
et al., 2000), demonstrating that it belongs to the class of
“TIM-barrel” proteins. The MeTr gene has been cloned,
sequenced, and overexpressed in an active form in E coli
(Roberts et al., 1989, 1994).

Although MeTr can use either vitamin B12 or the CFeSP
as the methyl acceptor, its specificity (kcat/Km) for the
CFeSP is 100-fold greater than that for free B12 (Zhao
et al., 1995). The steps in the MeTr mechanism include: (1)
a pH-dependent conformational change in MeTr (Zhao &
Ragsdale, 1996), (2) CH3-H4folate and the CFeSP binding
to MeTr in a rapid equilibrium fashion to form a ternary
complex, (3) protonation of the N-5 of CH3-H4 folate,
(4) methyl transfer from CH3-N of the pterin to Co1+ to
form H4folate and CH3-CFeSP, and (5) products disso-
ciation (Seravalli et al., 1999). The protonation step is
required for electrophilic activation of the methyl group,
making it more susceptible to nucleophilic displacement
by the cob(I)amide state of the CFeSP.

Besides electrophilic activation of CH3-H4folate, this
reaction also requires reductive activation of the CFeSP.
This is because the transmethylation reaction requires the
Co1+ state, and once in every 100 turnovers the cobalt cen-
ter undergoes oxidation to the inactive Co2+ state (Menon
& Ragsdale, 1999). The low potential [4Fe-4S] cluster is
required to mediate electron transfer from physiological
electron donors to the cobalt center (Menon & Ragsdale,
1998), which regenerates the active Co1+ state. The CFe-
SPs of acetogens and methanogens are unusual in that they
lack either an intramolecular benzimidazole base or a his-
tidine residue (that ligates to Co in many B12 proteins)
(Ragsdale et al., 1987; Wirt et al., 1993, 1995). The ab-
sence of this ligand makes the Co-bound methyl group
more susceptible to nucleophilic attack and increases the
midpoint potential of the Co2+/1+ couple by about 150 mV,
which would allow the cell to maintain more Co in the ac-
tive Co1+ state (Harder et al., 1989). Thus, controlling
cobalt coordination chemistry prevents Co1+ from drop-
ping out of the catalytic cycle.
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Conversion of Acetyl-CoA to Pyruvate. PFOR
catalyzes the thiamine pyrophosphate (TPP)-dependent
oxidative decarboxylation of pyruvate to form acetyl-
CoA and CO2 (Equation (7)). A detailed review of PFOR
was published this year, so this section will be brief
(Ragsdale, 2003b). All members of the Archaea king-
dom appear to contain PFOR, and it is widely distributed
among anaerobic bacteria and anarobic protozoa like Gi-
ardia
(Horner et al., 1999). PFORs has been isolated from the
acetogenic bacterium Moorella thermoacetica (f. Clostrid-
ium thermoaceticum) (Drake et al., 1981; Menon &
Ragsdale, 1996a) and other Clostridia, (Uyeda &
Rabinowitz, 1971) from the methanogenic archaea,-
Methanosarcina barkeri (Bock et al., 1994) and Methano-
bacterium thermoautotrophicum (Tersteegen et al., 1997),
and from several hyperthermophilic archaea (Adams &
Kletzin, 1996).

The oxidation of pyruvate by PFOR generates low po-
tential electrons (Eo′ = −540 mV) that reduce ferredoxin
or flavodoxin (Brostedt & Nordlund, 1991; Cammack
et al., 1980; Hughes et al., 1995; Kerscher & Oesterhelt,
1982; Kletzin & Adams, 1996; Wahl & Orme-Johnson,
1987). This reaction occurs extremely rapidly, with a sec-
ond order rate constant of 2–7 × 107 M−1s−1 for the D.
africanus (Pieulle et al., 1999) and the M. thermoacetica
(Furdui & Ragsdale, 2002) PFORs. Since the PFOR reac-
tion is reversible, the enzyme has also been called pyru-
vate synthase. In methanogens and other anaerobic mi-
crobes synthesizing cell carbon by the Wood-Ljungdahl
pathway, pyruvate formation is a most important reaction
because it links the Wood-Ljungdahl pathway to the in-
complete reductive tricarboxylic acid cycle, which gen-
erates biosynthetic intermediates. The tremendous energy
barrier for pyruvate formation appears to be accomplished
by reverse electron transfer involving coupling of H2 ox-
idation by the membrane-associated Ech hydrogenase to
the membrane (Meuer et al., 2002). Two genes were re-
cently discovered that encode proteins (PorE and PorF)
and are components of a specialized system required to
transfer low-potential electrons for pyruvate biosynthesis
(Lin & Whitman, 2003; Lin et al., 2003).

PFOR(EC1.2.7.1):

pyruvate + CoA + 2Fd(ox) → CO2

+ H+ + acetyl-CoA + 2Fd(red) [7]

The crystal structure of the Desulfovibrio africanus
PFOR was determined (Chabriere et al., 1999). This pro-
tein contains 7 structural domains. The active site con-
tains TPP and a proximal [4Fe-4S]2+/1+ cluster, which are
buried within the protein. Two additional [4Fe-4S]2+/1+
clusters lead to the surface, where interactions with a re-

FIG. 18. Formation of the substrate-derived HE-TPP radical
intermediate. Electron transfer from HE-TPP to an FeS cluster
results in formation of the HE-TPP radical and reduction of a
[4Fe-4S] Cluster. The radical is shown as a pi radical, which is
consistent with recent spectroscopic studies of PFOR.

dox partner such as ferredoxin can occur (Chabriere et al.,
1999). Each of the three clusters is separated by ∼13 Å
(center-to-center).

Two key steps in the mechanism are the generation
and decay of a substrate-derived hydroxyethyl-TPP rad-
ical (HE-TPP) intermediate (Figure 18). The radical inter-
mediate has been captured at 80% occupancy in the crystal
structure of the PFOR from D. africanus (Chabriere et al.,
2001). A provocative hypothesis proposed that the thia-
zolium ring has lost its aromaticity in the radical interme-
diate to form a σ /n-type radical. Unusual characteristics of
this radical are ketonization of the hydroxy group at C2α to
form an acetyl radical, a long C2-C2α bond, sp3 hybridiza-
tion at thiazolium atoms N3 and C5, and tautomerization
of the C4-C5 double bond to give an exocyclic double
bond. This proposed structure requires further validation
to ensure that it is consistent with EPR spectroscopic data,
since some preliminary results indicate that the radical
may be best explained as a π radical. The figure shows the
radical localized on oxygen, but since the thiazolium is
aromatic, the spin density would be somewhat delocalized
over the thiazolium ring.

When the rate constants for the different steps in the
PFOR mechanism were determined, it was found that CoA
increases the rate of electron transfer from the radical to
one of the [4Fe-4S] clusters in the protein by 105–fold
(Furdui & Ragsdale, 2002; Menon & Ragsdale, 1997).
Analysis by Marcus theory indicates the thiol group of
CoA lends over 40 kJ/mol to the electron transfer rate
enhancement (Furdui & Ragsdale, 2002). Future experi-
ments will be aimed at elucidating how CoA increases the
rate of this electron transfer reaction.
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PERSPECTIVES

This review has focused on the biochemistry of microbial
carbon monoxide metabolism. It now appears plausible
that the use of CO is an evolutionarily ancient process,
perhaps initiating with simple metal clusters and increas-
ing in efficiency as the metallocenters became enveloped
by peptides and then by complex evolving proteins. The
structures of three distinct types of proteins that metabo-
lize CO have appeared, along with one that controls gene
expression in response to the presence of CO. In sum, four
different transition metals (Cu, Ni, Fe, and Mo) in different
arrangements are the cornerstones of CO metabolism.

Mutagenesis and spectroscopic studies are uncovering
how ligand exchange reactions, apparently coupled to con-
formational changes in a long helix at the subunit interface,
control whether the heme-based CO sensor binds DNA or
not. A crystal structure of the CO-bound form of this pro-
tein will be important in further understanding this system.

A Cu molybdopterin center that has relatively low effi-
ciency has been shown to be responsible for CO oxidation
in some aerobic bacteria, while Ni-Fe-S centers prevail in
the anaerobic world. Remarkably, two different Ni met-
allocenters in apparently unrelated proteins have evolved:
a NiFe4S4 center in CODH to oxidize CO at rates ex-
ceeding 109 M−1s−1 and a Ni2Fe4S4 center in ACS to
synthesize the key metabolic building block acetyl-CoA
by condensing CO with a methyl group and Coenzyme A.
The long-awaited molecular structures of these catalysts
are now known. Now biological, computational, synthetic,
structural, and physical chemists are at this scientific fron-
tier attempting to understand how these remarkable bio-
organometallic reactions occur. Over the next few years,
we can hope that the crystal structures of the intermediates
can be determined, including M-CO, M-CH3, M-acetyl,
M-SCoA for ACS and M-CO, M-hydroxide, perhaps even
M-CO2 for CODH. One can also expect to learn more
about how conformational changes in the CODH/ACS
are coordinated with catalysis. Hopefully, questions about
whether the catalytic cycles operate through paramagnetic
or diamagnetic mechanisms will be clearly resolved by sci-
entists who are at work modeling, calculating, modifying,
measuring, and visualizing the enzymes and their active
centers.

One of the most exciting recent findings has been the
discovery of a long channel that directs CO that is gener-
ated by CODH to the ACS active site. The chemical nature
of this channel will soon be revealed and we will have a
better understanding of how one can direct the movement
of a small hydrophobic gas molecule over relatively long
distances. Precise functioning of this channel is paramount
to the proper operation of the CODH/ACS nanomachine.

CO metabolism is linked to pathways for energy gen-
eration and cell carbon synthesis in these organisms. We

will soon see the crystal structure of MeTr with bound
CH3-H4folate, which will help us understand the nature
of electrophilic activation of the methyl group. How the
pterin and the Co center, bound to the CFeSP, are posi-
tioned in the transition state, and how protonation of the
pterin is linked to methyl transfer, will continue to be the
focus of studies on this class of proteins.

The crystal structure of PFOR, which links CO
metabolism to cell carbon synthesis, has appeared. This
is an entirely different mechanism of acetyl-CoA synthe-
sis. We will soon have a revised structure of the substrate-
derived HE-TPP radical intermediate in the PFOR mech-
anism. Over the next few years, the reader can expect to
learn how this radical reacts with the thiol of CoA to gener-
ate acetyl-CoA. Generation of pyruvate from acetyl-CoA
is a Herculean task, and how energy is transformed to ac-
complish this uphill reaction will be an exciting area.

It seems a safe bet that studies of CO metabolism will
continue to be an exciting research area for microbiolo-
gists, biochemists, chemists, and physicists. This research
is also expected to be an area for chemical and biologi-
cal engineers to develop new catalysts that can help solve
some environmental problems, like lowering greenhouse
gas levels and cleaning up hazardous wastes, and facilitate
difficult chemistry, like CO2 activation.
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