Life with Carbon Monoxide

Stephen W. Ragsdale

Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, NE, USA

This review focuses on how microbes live on CO as a sole source of carbon and energy and with CO by generating carbon monoxide as a metabolic intermediate. The use of CO is a property of organisms that use the Wood-Ljungdahl pathway of autotrophic growth. The review discusses when CO metabolism originated, when and how it was discovered, and what properties of CO are ideal for microbial growth. How CO sensing by a heme-containing transcriptional regulatory protein activates the expression of CO metabolism-linked genes is described. Two metalloenzymes are the cornerstones of growth with CO: CO dehydrogenase (CODH) and acetyl-CoA synthase (ACS). CODH oxidizes CO to CO₂, providing low-potential electrons for the cell, or alternatively reduces CO₂ to CO. The latter reaction, when coupled to ACS, forms a machine for generating acetyl-CoA from CO₂ for cell carbon synthesis. The recently solved crystal structures of CODH and ACS along with spectroscopic measurements and computational studies provide insights into novel bio-organometallic catalytic mechanisms and into the nature of a 140 Å gas channel that coordinates the generation and utilization of CO. The enzymes that are coupled to CODH/ACS are also described, with a focus on a corrinoid protein, a methyltransferase, and pyruvate ferredoxin oxidoreductase.

Keywords acetogenesis, methanogenesis, carbon dioxide fixation, nickel, iron-sulfur, metallobiochemistry, CO dehydrogenase, acetyl-CoA synthase, CO₂ fixation, molybdopterin, iron-sulfur cluster, evolution, heme, gene regulation, nickel, metalloenzyme, copper, substrate channeling, EPR spectroscopy, IR spectroscopy, corrinoid protein, vitamin B₁₂, Wood-Ljungdahl pathway, autotrophic growth, methyltransferase, pyruvate ferredoxin oxidoreductase, pyruvate synthase, CH₃-H₄folate, anaerobe

PROSPECTIVE AND INTRODUCTION

This review will focus on how microbes live, not only on CO as a sole source of carbon and energy, but also with CO by generating carbon monoxide as a metabolic intermediate. Since CO is an inorganic carbon source, we will consider growth on CO as autotrophic, although Wilhelm Pfeffer’s 1897 definition, which is still used today, includes organisms able to synthesize their cell substance from inorganic carbonate as their main source of carbon (Brock & Schlegel, 1989). The use of CO, a toxic gas to animals, as a metabolic building block is an interesting property of certain classes of diverse organisms that can grow on CO₂ by any of the known CO₂ fixation pathways as long as they have a mechanism for converting CO into CO₂. This review will focus on the enzyme, CO dehydrogenase (CODH), that interconverts CO and CO₂. It will also focus on a CO₂ and CO fixation mechanism called the Wood-Ljungdahl pathway (Figure 1). This figure shows growth on glucose; however, as described below, this pathway allows for autotrophic growth on CO₂ with electrons coming from H₂ oxidation, on CO serving as both a carbon and energy source, and on other compounds. Several questions related to the microbial metabolism of CO will be discussed. When did microbial CO metabolism originate and how was it discovered? Is there reasonable evidence for the hypothesis that the first living organisms metabolized CO? What properties of CO make it ideal for growth of certain microbes?

It is timely to describe recent exciting findings related to the two metalloenzymes at the foundation of CO metabolism: (CODH) and acetyl-CoA synthase (ACS). CODH is a redox-chemical transformer that generates high-energy electrons as it catalyzes the oxidation of CO to CO₂ (Equation (1)). The CO₂ is then fixed into cellular carbon by one of the reductive CO₂ fixation pathways, like the Calvin-Benson-Bassham Cycle, the reverse tricarboxylic acid (TCA) cycle, the 3-hydroxypropionate cycle, or the Wood-Ljungdahl pathway. In at least some of these organisms (Youn et al., 2004), e.g., Rhodospirillum rubrum, CO is sensed by binding to a heme-containing transcriptional regulatory protein (Aono et al., 1996; Shelver et al., 1997) that activates the expression of a battery of structural, metal incorporation, and maturation genes (Fox et al., 1996).
FIG. 1. The Wood-Ljungdahl pathway of autotrophic CO and CO$_2$ fixation. CODH, CO dehydrogenase; ACS, acetyl-CoA synthase; MeTr, methyltransferase; CFSP, Corrinoid iron-sulfur protein. PFOR, pyruvate ferredoxin oxidoreductase. Reactions leading to the formation of the methyl group of acetyl-CoA are colored red, while those leading to the carbonyl group are colored blue.

When the redox-chemical transformer CODH is coupled to ACS, it forms a powerful machine for generating the ubiquitous building block acetyl-CoA from CO$_2$, a methyl group, and CoA (Figure 2). In this case, CODH reduces CO$_2$ to CO, which is the source of the carbonyl group of acetyl-CoA in the final steps of the Wood-Ljungdahl pathway. ACS is a NiFeS enzyme that condenses Coenzyme A, a methyl group, and CO generated by CODH to form acetyl-CoA (Equation (2)). The methyl group is donated by an organometallic methylcobamide (a vitamin B$_{12}$ derivative) species on a protein called the corrinoid iron-sulfur protein (CFSP). The structure and function of the CFSP, and how this methyl-Co intermediate is generated in a methyltransferase-catalyzed reaction, are discussed more briefly since these aspects of the Wood-Ljungdahl pathway have been recently reviewed (Banerjee & Ragsdale, 2003).

This review describes the recently solved crystal structures of CODH and ACS, which have prompted a reinterpretation of spectroscopic studies performed over the past two decades. These structures, spectroscopic measurements, and computational studies provide insights into the novel bioorganometallic catalytic mechanisms that underlie the Wood-Ljungdahl pathway and resemble some important industrial reactions. Generation and utilization of the toxic gas CO occur at active sites that are 70 Å apart. How are the activities of these two sites coordinated so that CO does not escape from the enzyme? The nature of a channel and the evidence for kinetic coupling between the two active sites is described. This gas channel is compared to other gas channels that have been described in nature.

Life with CO involves the conceptually simplistic stepwise condensation of two one-carbon compounds to form a two-carbon acetyl unit followed by the successive addition of one-carbon units. Recent studies on pyruvate ferredoxin oxidoreductase (PFOR), the enzyme that generates pyruvate (Equation (3)), the first three-carbon unit, are only briefly described since it has been recently reviewed (Ragsdale, 2003b). PFOR is extremely important because it also is a source of CO$_2$ and low-potential electrons when the cells grow on sugars. Further reactions that interface the Wood-Ljungdahl pathway to the synthesis of cellular components are described. The review also summarizes some studies of how CO metabolism is regulated and the radical differences in regulatory systems between those organisms that function to oxidize CO and those that

FIG. 2. CODH/ACS, a nanomachine. CODH is represented as a transformer for generating CO and ACS as a condenser that converts CO, a methyl group, and CoA to form acetyl-CoA, a cellular biosynthetic building block and source of ATP.
generate and utilize it.

\[
2 \text{ electrons} + 2 \text{H}^+ + \text{CO}_2 \rightleftharpoons \text{CO} + \text{H}_2\text{O} \quad [1]
\]
\[
\text{CO} + \text{CH}_3\text{CFeSP} + \text{CoA} \rightarrow \text{acetyl-CoA} + \text{CFeSP} + \text{H}^+ \quad [2]
\]
\[
\text{Pyruvate} + \text{CoA} \rightleftharpoons \text{acetyl-CoA} + \text{CO}_2 + \text{H}^+ + 2 \text{ electrons} \quad [3]
\]

Discovery of Microbial CO Metabolism

Enzymatic CO oxidation was discovered around 1903, when thin films of bacteria were found growing in a purely mineral medium with coal gas, a mixture of H₂ and CO, as the carbon source (Beijerinck & van Delden, 1903). Kaserer recognized that a similar bacterial culture was growing on a carbon-containing component of the atmosphere (Kaserer, 1906) but two decades passed before the first bacterial strain that could grow on CO was isolated (Lantzsch, 1922). It is now known that CO can serve as a carbon and electron source for many bacteria, including anaerobes such as *Moorella thermoaceticum* (Daniel et al., 1990; Kerby & Zeikus, 1983), some purple sulfur bacteria akin to *R. rubrum* (Uffen, 1983), and *Carboxydothermus hydrogenoformans* (Svetlichny et al., 1991), as well as some aerobic carboxydobacteria like *Oligotropha carboxidovorans* (Meyer & Schlegel, 1983). These are the organisms in which CO metabolism has been most thoroughly studied.

This area of CO oxidation and synthesis may eventually have a practical benefit. Development of catalysts that can be used on a large scale to lower CO concentrations in heavily polluted areas is one significant challenge to science. Furthermore, many scientists and government policy makers would be interested in ways to decrease the concentration of CO₂, a potent greenhouse gas that is relatively inert. One possibility is to develop biomimetic catalysts since CODH rapidly and efficiently oxidizes CO at rates between 4,000 and 40,000 s⁻¹, depending on the source, and reduces CO₂ (∼11 s⁻¹) (Kumar et al., 1994; Lindahl et al., 1990a) with virtually no overpotential and under mild conditions.

Why CO? Importance of CO Metabolism

CO Uptake and Oxidation. CO is a toxic, odorless, and tasteless gas that is produced by natural and anthropogenic processes by the incomplete combustion of organic materials. The OSHA limit for CO is 50 ppm continuous exposure for 8 h, because mild effects of CO poisoning are observed within 2–3 h when CO levels climb to 200 ppm and exposure to 1000 ppm for 1 h is fatal. CO is produced by incomplete combustion of fuel, for example, from motor vehicle exhaust, which contributes about 60% of all CO emissions in the USA. The major natural CO sources are methane and natural hydrocarbon oxidation. CO emissions, which are nearly equally distributed between natural and manmade sources, lead to atmospheric levels of CO ranging from about 0.1 ppm in rural areas to approximately 30 ppm in urban areas. Nevertheless, some microbes base their autotrophic metabolism on such trace levels by oxidizing CO at rates as high as 40,000 mol CO per mol enzyme per second and catalytic efficiencies reaching 2 × 10⁹ M⁻¹s⁻¹ (Svetlichny et al., 2001). Microbial CO metabolism is quite important to all animals, since about 10⁸ tons of CO are removed from the lower atmosphere of the earth by bacterial oxidation every year (Bartholomew & Alexander, 1979), which helps to maintain ambient CO below toxic levels.

CO can serve as both a carbon and electron source for organisms that use the Wood-Ljungdahl pathway. First, it can provide extremely low potential electrons for reducing cellular electron carriers. With a CO₂/CO reduction potential of −558 mV (pH 7.0; Grahame & Demoll, 1995), CO is about 1000-fold more potent than NADH.

Second, CO has ideal chemical properties for the biorganometallic reaction sequence in the Wood-Ljungdahl pathway. Containing a multiple bond, C≡O is a weak Lewis base and an unsaturated soft ligand that can accept metal dπ electrons by a process called back bonding. Thus, CO acts both as a sigma donor and pi acceptor that can form stable complexes with the low valent states of the metal sites in enzymes. Of course, this property also makes CO a strong inhibitor of metalloproteins that use low valent metals in their functions, like hydrogenases and hemeproteins that function to bind O₂ or other diatomic gases. Besides its ability to serve as a strong ligand for transition metals, the metal carbonyls that are produced are known to undergo facile ligand substitutions, insertions, eliminations, and nucleophilic additions (Crabtree, 1988; Lukehart, 1985). These reactions can be fine tuned by altering the polarization of the metal-bound CO. For example, nucleophilic addition reactions (e.g., attack by hydroxide anion during CO oxidation) and migratory insertion reactions (e.g., methyl addition during acetyl-CoA synthesis) are promoted by increasing the electrophilicity of the CO carbon. On the other hand, an electrophilic attack at oxygen would be favored by increasing the nucleophilicity at the CO oxygen. It will be exciting for computational chemists to consider ways that the Ni active sites of CODH and ACS, which both appear to form Ni-CO complexes (Chen et al., 2003), have been crafted to enhance the particular required reaction and prevent other potentially inhibitory reactions. For example, the M-CO complex plays a key role in industrial organometallic catalysis.
reactions, including catalytic carboxylation, the Fischer-Tropsch reaction, reactions with syn Gas, hydroformylation reactions, homologation reactions, the Water-Gas Shift Reaction, and hydrogenation reactions using water as the hydrogen source (Ford & Rokicki, 1988). Some important strides in computational studies of the CODH and ACS reactions have already been made (Schenker & Brunold, 2003; Webster et al., 2004).

Another reason that CO is an excellent metabolite for organisms that use the Wood-Ljungdahl pathway is that it is already dehydrated and at the oxidation state of the carbonyl group of acetyl-CoA, which is a key building block for cellular anabolism and an important source of ATP.

CO Production. Organisms that use the Wood-Ljungdahl pathway generate CO from CO₂ or pyruvate as a metabolic intermediate (Menon & Ragsdale, 1996a). Humans also produce CO as a signal molecule (Verma et al., 1993) during heme metabolism by heme oxygenase (Boehning & Snyder, 2003). CO is also biologically generated during conversion of S-methylthioadenosine (Boehning & Snyder, 2003). CO is also biologically generated during conversion of S-methylthioadenosine to methionine (Boehning & Snyder, 2003). CO is also biologically generated during conversion of S-methylthioadenosine to methionine (Boehning & Snyder, 2003). CO is also biologically generated during conversion of S-methylthioadenosine to methionine (Boehning & Snyder, 2003). CO is also biologically generated during conversion of S-methylthioadenosine to methionine (Boehning & Snyder, 2003).

As shown in Figure 1, CO₂ can come from the decarboxylation of pyruvate, which is generated from sugars by the Embden-Meyerhof pathway. It also can be formed from the carboxyl group of benzoic acid and its derivatives (Hsu et al., 1990a, 1990b). Some anaerobic microbes, like acetogens and methanogens, can use the Wood-Ljungdahl pathway to utilize CO₂ from the growth medium. The coupling of pyruvate oxidation to CO synthesis and to acetyl-CoA formation has been well studied in M. thermoacetica (Menon & Ragsdale, 1996a, 1996b, 1997). PFOR catalyzes the conversion of pyruvate to acetyl-CoA and CO₂ (Equation (3)). Then CODH reduces CO₂ to CO (Equation (1)). Finally, ACS, which is the other subunit of the bifunctional CODH/ACS, catalyzes the condensation of CO with a methyl group and coenzyme A to form acetyl-CoA (Equation (2)). Acetyl-CoA is then used in ATP generation or in cellular biosynthesis (Figure 1). Thus, the bifunctional enzyme CODH/ACS plays an essential role in energy metabolism and cellular biosynthesis.

Since these organisms generate CO during their growth, why aren’t they environmentally hazardous? On the contrary, we harbor acetogens and methanogens in our gastrointestinal tract (Dore et al., 1995; Wolin & Miller, 1994). Surprisingly, although cultures of M. thermoacetica growing on glucose with a 100% CO₂ gas phase have a vast potential for CO production, they only produce about 50 ppb CO (Diekert et al., 1984). As discussed below, there is tight regulation of CO production and CO utilization. There is strong evidence that the CO produced during acetyl-CoA biosynthesis is sequestered in a molecular channel, which maintains the CO concentration below toxic levels for the host organisms and allows organisms to retain this valuable carbon and energy source without having it escape into the environment.

CO and CO₂ Fixation with an Evolutionary Perspective

Since CO and CO₂ are in equilibrium, CO metabolism is linked to the global carbon cycle, which involves the oxidation of organic carbon to CO₂ by heterotrophic organisms as an energy source and the replenishment of fixed organic carbon by autotrophic organisms in a reductive process called CO₂ fixation. CO₂ is returned to the carbon cycle by one of the following pathways: the Calvin-Benson-Basham cycle, the reductive TCA cycle, the Wood-Ljungdahl (acetyl-CoA) pathway (Equation (4)), or the 3-hydroxypropionate (Menendez et al., 1999) cycle. The Calvin-Benson-Basham cycle requires energy, which is driven by photosynthesis or chemoautotrophy. On the other hand, the Wood-Ljungdahl pathway, in coupling H₂ oxidation to CO₂ reduction, is exergonic and conserves energy for the organism by electron transfer-linked phosphorylation (Hugenholtz & Ljungdahl, 1989).

Perhaps the use of CO remains from the early atmospheric conditions when life first evolved around 4 billion years ago. This follows from the hypothesis that the first organisms were autotrophic (Huber & Wächtershäuser, 1997; Russell et al., 1998; Russell & Hall, 1997). Based on the patterns of isotopic fractionation between ¹²C and ¹³C, the sedimentary carbon record indicates that autotrophic growth developed soon after the earth became habitable (Schidlowski et al., 1983). Furthermore, anaerobic organisms using the Wood-Ljungdahl pathway have an isotope fractionation pattern consistent with the hypothesis that they may have been using inorganic compounds like CO and H₂ as an energy source and CO₂ as an electron acceptor approximately 1 billion years before O₂ appeared (Brock, 1989). Since volcanic gases can contain as high as 1% CO, perhaps early life forms evolving in volcanic sites or hydrothermal vents could have used CO as their carbon and energy source. If this scenario is correct, CO
metabolism today can be viewed as the extant survivor of early metabolic processes (Huber & Wachtershauser, 1997).

\[
4 \text{H}_2 + 2 \text{CO}_2 \rightarrow \text{CH}_3\text{COO}^- + \text{H}_2\text{O} + 2 \text{H}^+ \\
\Delta G^\circ = -95 \text{ kJ/mol} \tag{4}
\]

MICROBES THAT CAN METABOLIZE CARBON MONOXIDE

Aerobic CO Metabolism

Carboxydotrophic bacteria are aerobic microbes that grow on CO as their sole source of carbon and energy. These microbes transfer the electrons derived from CODH-catalyzed CO oxidation through an electron transport chain that finally reduces oxygen according to Equation (5) (Meyer & Rhode, 1984). The CO\textsubscript{2} is assimilated into cell carbon through the Calvin-Benson-Basham pathway. The carboxydothetes are well suited for a role in CO detoxification in the environment because they have a high propensity for uptake of this trace gas, with \textit{Km} values as low as 0.6 \textmu M (Meyer \textit{et al.}, 1993); however, their turnover numbers are nearly 1000-fold lower than those of the anaerobic Ni-CODHs (Gnida \textit{et al.}, 2003). These enzymes are called Mo-CODHs because they contain molybdopterin (Mo-CODH) and share many properties with the Mo hydroxylases, such as sulfite oxidase and xanthine oxidase.

\[
\text{O}_2 + 2.19 \text{CO} \rightarrow 1.83 \text{CO}_2 + 0.36 \text{Cell Carbon} \tag{5}
\]

Genes and Regulation of Anaerobic CO Metabolism

CO Sensing and Oxidation by the coo System. \textit{R. rubrum}, which utilizes CO as a source of carbon and energy, contains the \textit{coo} regulon, consisting of at least two operons (Figure 3). When microbes sense the presence of CO, expression of the \textit{coo} genes is induced at least 1000-fold (Shelver \textit{et al.}, 1995). The first operon in the \textit{coo} gene cluster encodes a hydrogenase and the proteins involved in generating the active form of the enzyme, while the second operon consists of the genes for CODH (\textit{coo}S), a membrane-associated electron transfer FeS protein (\textit{coo}F), and at least three other genes involved in generating the NiFeS-active site of \textit{coo}S. \textit{Coo}C is a Ni insertase (Jeon \textit{et al.}, 2001) that is similar to \textit{ure}E in binding and hydrolyzing ATP or GTP (Song \textit{et al.}, 2001). \textit{Coo}J also is similar to \textit{Ure}E and contains a His-rich C-terminus that can bind as many as four Ni ions (Watt & Ludden, 1998). The role of \textit{Coo}T is less well understood, but it appears to aid in ensuring that Ni, instead of other metals, are incorporated into the active site of CO oxidation, called Cluster C (below) (Kerby \textit{et al.}, 1997). The proteins involved in Ni incorporation into CODH and their functions have been reviewed (Watt & Ludden, 1999).

CO is sensed by a heme that is bound to CooA, which is a member of a large family of transcriptional activators that include the cAMP regulatory protein (CRP) and fumarate nitrate reductase regulator (FNR) (Aono, 2003). These proteins contain an N-terminal effector binding domain, which in CooA is a heme wrapped in a beta roll structure, and a C-terminal helix-turn-helix DNA binding domain (Figure 4) (Lanzilotta \textit{et al.}, 2000). In the unactivated ferrous form of CooA, a histidine residue (His77)
and, surprisingly, the amino terminal proline (Pro2) serve as the heme ligands (Lanzilotta et al., 2000). Although only the structure of reduced CooA is known, spectroscopic studies have uncovered a complex series of ligand switches. While the ferrous heme of CooA is 6-coordinate with Pro2 and His77 as the axial ligands, Cys75 and Pro2 are the ligands in the ferric state (Aono, 2003; Coyle et al., 2003; Yamamoto et al., 2001). CO binds to the ferrous state (with Pro and His ligands), replacing the proline ligand, which causes a major structural rearrangement, promoting the formation of a productive complex with RNA polymerase and the coo promoter region (Aono, 2003). By mutagenesis, the sites of interaction between CooA and RNA polymerase have been mapped (Leduc et al., 2001). A key region in CooA and related proteins is a long helix, called the C-helix, that connects the DNA-binding and the effector domains, and serves as the dimer interface (Lanzilotta et al., 2000). It is proposed that when CO binds, the heme is displaced into an adjacent cavity and is approached by the C-helix of the opposite subunit. It is suggested that motions trigger the protein conformation change required for DNA binding.

CooA is one of several gas (O2, CO, NO) sensor proteins that have been identified (Aono, 2003). A mammalian CO-sensing heme protein, called neuronal PAS domain protein 2, which serves as a transcriptional regulator of circadian rhythm, recently has been reported (Dioum et al., 2002).

CO Metabolism and the acs System—A CO Metabolizing Machine. The proteins that catalyze the carbonyl (Western) part of the Wood-Ljungdahl pathway are encoded by the acs operon (Figure 5). The genes are organized in order of their role in the pathway: MeTr, CFeSP, and CODH/ACS. A Ni-processing protein (AcsF), such as UreE in urease activation (Song et al., 2001), or CooC in the coo system (Jeon et al., 2001), and an iron-sulfur protein (orf7) with an unknown role were recently identified (Loke & Lindahl, 2003). This gene cluster is named after ACS, which is unique to organisms that use the Wood-Ljungdahl pathway and, thus, serves as a marker enzyme for this pathway. Some acs orthologs are found among various anaerobic Bacteria (acetogens, sulfate reducers, desulfitobacteria) and Archaea (methanogens and

CoA

Moorella thermoacetica

- **acsA** (71 kDa)
 - CODH

- **acsB** (78 kDa)
 - ACS

- **acsC** (55 kDa)
 - CFeSP

- **acsD**
 - Fe-S Ni Insertase

- **acsE** (27 kDa)
 - MeTr

Methanosarcina thermophila

- **cdhA** (89 kDa)
 - CODH

- **cdhB** (19 kDa)
 - ORF

- **cdhC** (52 kDa)
 - ACS

- **cdhD**
 - CFeSP

- **cdhE** (51 kDa)

FIG. 5. The acs operon from *M. thermoacetica* is compared with that of *M. thermophila.*
ENZYMES THAT CATALYZE CO OXIDATION

Nomenclature: CODH, ACS, CODH/ACS

The enzymes that catalyze CO oxidation and those that catalyze acetyl-CoA synthesis have sometimes been collectively called “carbon monoxide dehydrogenases” (CODHs). This is problematic for several reasons. CO oxidation and acetyl-CoA synthesis are entirely different in character and would fall into separate categories in the International Enzyme Commission Classification scheme—the oxidoreductase (EC 1.2.x.x) and the lyase (EC 4.2.x.x) classes, respectively. In addition, some CODHs do not contain ACS activity, and ACS can be expressed in the absence of CODH. Names for each activity abound. CODH has been called CO:acceptor oxidoreductase, CO oxidase, and CO₂ reductase.

To avoid confusion, it is important to use names for these enzymes that are congruous with the International Enzyme Commission classification scheme. In 1996, after an extensive discussion among some of the major groups in the field, the following nomenclature was suggested in a review article (Ragsdale & Kumar, 1996). It is suggested that the name CO dehydrogenase (CODH) be used as the recommended name and CO:acceptor oxidoreductase as the systematic name for the activity that catalyzes CO oxidation to CO₂ or its reverse. This name correctly denotes that this reaction is in the EC1.2 oxidoreductase class. The acceptor cannot be further specified because CODH efficiently uses many physiological electron acceptors (ferredoxin, flavodoxin, cytochromes, rubredoxin, etc.) and dye mediators (methylene blue, thionin, methyl viologen, FMN, FADH₂, etc.).

It is suggested that the name acetyl-CoA synthase (ACS) should be used as the recommended name and CO: methylated corrinoid iron-sulfur protein:CoA lyase as the systematic name for the enzyme that assembles acetyl-CoA from enzyme-bound methyl, CO, and CoA groups. Reasons for these choices are described below. To denote the source of the enzyme, the genus and species are included as a prefix in lower-case italicized letters; e.g., for the Moorella thermoacetica CODH, the name would be mtCODH. For the methanogenic ACS, the name acetyl-CoA decarboxylase synthase has often been used; however, it seems unnecessary to use more complicated terms like acetyl-CoA decarboxylase synthase, because it seems redundant to name the reaction in both directions. It also has been argued that both the CODH and ACS activities can be included under the umbrella CODH; however, this name disregards the ACS function. The term acetyl-CoA synthase has been in use since 1985 and describes the physiological role of the enzyme in acetogenic bacteria and methanogens to catalyze the key activity that defines the autotrophic Wood-Ljungdahl pathway. The recommended systematic name, CO:methylated corrinoid iron-sulfur protein:CoA lyase, includes the three substrates for ACS and the enzyme class that designates that the enzyme catalyzes the formation of acetyl-CoA by group elimination reactions in the absence of ATP hydrolysis. Since the reaction is unlike that of other lyase subclasses, ACS should gain the next highest subclass number.

Following from the above discussion, it is recommended that the bifunctional enzyme should be CO dehydrogenase/acetyl-CoA synthase or CODH/ACS. Neither ACS nor CODH alone would suffice because they describe only the partial reactions. CODH/ACS is preferable to ACS/CODH because CODH precedes ACS in function.

Early Studies of CODH and CODH/ACS

Yagi first identified an enzyme that catalyzes the oxidation of CO to CO₂ (Yagi, 1959). Diekert and Thauer first identified this enzyme in acetogenic bacteria (Diekert & Thauer, 1978), yet it was nearly a decade before CODH was purified to homogeneity, due mainly to its extreme oxygen sensitivity (Ragsdale et al., 1983a). The secret to working with most of the enzymes involved in this pathway is to strictly exclude oxygen. Bacteria must be grown and harvested anaerobically, and every step in the purification and manipulation of the enzymes must be performed in an anaerobic chamber (we use a chamber manufactured by Vacuum Atmospheres that maintains the oxygen level at ~0.2 ppm).

One reason that purification of this enzyme was important was to test the hypothesis that formyl-H₄folate, the first cofactor-bound one-carbon compound in the Wood-Ljungdahl pathway, may be formed by direct transfer of a formate oxidation level intermediate on CODH (called [HCOOH] at the time) to formyl-H₄folate synthetase (Hu et al., 1982). Bypassing formate dehydrogenase in this manner would be advantageous because it would save the ATP required for the synthetase reaction. After CODH was purified to homogeneity and combined with the other purified enzymes of the Wood-Ljungdahl pathway, it was demonstrated that acetyl-CoA synthesis indeed required
formate dehydrogenase, as well as formyl-H₄folate synthetase and CODH/ACS (Ragsdale et al., 1983a).

CODH is one of the few nickel-containing proteins so far discovered in nature. The first indications that CODH contains Ni came from growth studies in which the addition of nickel to the growth medium stimulated CODH activity (Diekert & Thauer, 1980; Diekert et al., 1979). Biochemical evidence was provided when CODH activity and radioactivity were shown to comigrate in polyacrylamide gels of cell extracts of *M. thermoacetica* and radioactivity were shown to comigrate in polyacrylamide gels of cell extracts of *M. thermoacetica*. In the presence of the radioactive Ni isotope, ⁶³Ni (Drake et al., 1980). When the *M. thermoacetica* CODH was purified to homogeneity, it appeared to contain 2 mol of nickel per mol of αβ dimeric enzyme (Ragsdale et al., 1983a), although recent studies demonstrate that the fully active protein contains 3 Ni per dimeric unit (Seravalli et al., 2004). It contains subunits of 77 kDa and 71 kDa (Ragsdale et al., 1983a). CODH/ACS from *M. thermoacetica* was also purified to near homogeneity by Diekert and Ritter (1983) and shown to contain nickel. Diekert and Ritter (1983) also correctly surmised that the protein had an α₂β₂ structure which was verified later (Xia et al., 1996).

Early Studies of ACS

Many enzymes with the name CODH only catalyze the oxidation of carbon monoxide or its reverse reaction. However, the most important role for the CODH/ACS in acetogenic bacteria is to catalyze the synthesis of acetyl-CoA from a methyl group, CO or CO₂, and CoA. Various roles for CODH in acetate synthesis were suggested, including reduction of an electron carrier or enzyme prosthetic group involved in CO₂ reduction to acetate (Diekert & Thauer, 1978) and formation of an enzyme-bound [HCOOH] group from pyruvate (Drake et al., 1981; Pezacka & Wood, 1984) or CoA (Hu et al., 1982). Formation of the C=C bond of the acetyl moiety of acetate was assumed to occur at the cobalt center of a corrinoid or a corrinoid protein. Reasons for this have been summarized (Ragsdale, 1991) and, at this time, the major controversy was whether the synthesis occurred via an acetylcobalt, acetoxycobalt, or a carboxymethylcobalt intermediate.

When Harold Drake was a postdoctor with H. G. Wood, he discovered that a partially purified enzyme fraction catalyzed a remarkable reaction (Equation (6)) in which acetyl-CoA labeled in the carbonyl group became nonradioactive when it was incubated with CO (Hu et al., 1982). This isotope exchange reaction between CO and the carbonyl group of acetyl-CoA offered a simpler system for studying acetyl-CoA synthesis than the entire synthesis reaction, which at the time required five components that catalyzed synthesis of acetyl-CoA from pyruvate, methyltetrahydrofolate, and CoA (Drake et al., 1981), as shown in Figure 1. In the exchange reaction, acetyl-CoA must be disassembled by breakage of the methyl-carbonyl and carbonyl-SCoA bonds and then reassembled, which might involve only the single unknown component—the synthase itself. Based on the dogma of the time, as mentioned above, it was expected that the corrinoid protein, recently isolated in Wood’s lab (Hu et al., 1984), would be required for this reaction, since it had been assumed to be the catalyst on which the methyl and acetyl group are assembled. However, the purified CODH was the only catalyst required (Ragsdale & Wood, 1985). Since there were no acceptors of the methyl, CO, or CoA groups of acetyl-CoA in the reaction mixture other than CODH, it was recognized that the synthesis and assembly of acetyl-CoA occur on CODH, that the role of the CFeSP was to transfer the methyl group from methyltetrahydrofolate to CODH, and that a more appropriate name for the enzyme that catalyzes the synthesis of acetyl-CoA from CO, the methyl donor, and CoA is acetyl-CoA synthase (Ragsdale & Wood, 1985). Several enzyme-bound organometallic intermediates (M-CO, M-methyl, M-acetyl) were also proposed. What was not clear was whether CODH and ACS activities were catalyzed by the same or by separate active sites (see below). In summary, as described below, it now appears that the assembly of acetyl-CoA does indeed occur on ACS and that the assembly process occurs on metal centers involving organometallic bonds.

\[
\text{CO} + \text{CH}_3^-\text{CO}-\text{SCoA} \rightarrow \text{CO} + \text{CH}_3^-\text{CO}^-\text{SCoA}
\]

The CO Oxidation Catalysts—CODHs

There are three classes of CODH: the Mo-CODH, the Ni-CODH, and the Ni-CODH/ACS.

Mo-CODH. Although the midpoint reduction potential for the CO₂/CO couple (−558 mV, pH 7.0) is very negative, the best electron acceptors for the Mo-CODH have midpoint potentials between +0.011 V and 0.043 V, which contrasts with the Ni-CODHs that reduce a variety of high- and low-potential electron acceptors. The CODHs from carboxydotrophs also can oxidize NADH, an activity associated with all known Mo hydroxylases. Unlike the Ni-containing CODHs, the Mo enzymes are not oxygen sensitive.

The mesophilic enzyme from *Oligotropha carboxydovorans* and the thermophilic enzyme from *Oligotropha thermocarboxydovorans* have similar molecular masses (230,000–310,000) and (αβγ)₂ structures (Meyer et al., 1986). The carboxydotrophic CODH is encoded by plasmid-borne genes (Black et al., 1990; Hugendieck & Meyer, 1992; Meyer et al., 1990) that have been cloned and sequenced (Pearson et al., 1994; Schubel et al., 1995).
The active site contains a Cu linked to a Mo-pterin, molybdopterin cytosine dinucleotide (MCD) (Figure 6) (Gnida et al., 2003; Johnson et al., 1990). It was thought that Se was present in the active site, even based on the first crystal structure of the enzyme (Dobbeck et al., 1999); however this has been disproven (Dobbeck et al., 2002; Gnida et al., 2003). These CODHs also contain 2 mol of FAD and 8 Fe and 8 acid-labile sulfide, which are present as \([2\text{Fe}-2\text{S}]\) centers (Bray et al., 1983) and are involved in electron transfer to the catalytic Mo-pterin center (Meyer et al., 1993). Evidence that Mo is at the active site of CO binding is based on inhibition of enzyme activity by methanol, which traps Mo in the V state, the requirement of Mo for growth on CO, but not for heterotrophic growth, and inhibition of CO-dependent growth by the Mo antagonist, tungstate (Meyer & Schlegel, 1983). Meyer recently proposed that CO binds to the Cu site (Gnida et al., 2003).

The Ni-CODHs. The CODHs from *R. rubrum*, *C. hydrogenoformans*, and *M. thermoacetica* have been most extensively studied, and structures are known for each of these proteins. The structures of the three enzymes are very similar, and all ligands at the active site, as well as some residues proposed to facilitate acid-base chemistry at the active site, are conserved (Table 1). The *R. rubrum* and *C. hydrogenoformans* CODHs offer the advantage that they lack the ACS subunit, allowing focus on CODH alone. In addition, for *R. rubrum* a Ni-deficient protein containing all the Fe sites in the holoenzyme has been isolated (Ensign et al., 1989).

The CODH mechanism proposed here (Figure 7) and discussed in detail below is analogous to that of the water-gas shift reaction (Figure 8). The individual steps are discussed below. The key common intermediates include a metal-bound carbonyl, a metal bound hydroxide ion, and a metal carboxylate formed by attack of the M-OH on M-CO. Elimination of CO\(_2\) either leaves a metal-hydride or a two-electron-reduced metal center and a proton. In the CODH mechanism, it is proposed that the metal center becomes reduced by two electrons; however, CODHs have a weak CO-dependent hydrogen evolution activity that would be consistent with a metal-hydride intermediate (Bhatnagar et al., 1987; Menon & Ragsdale, 1996; Santiago & Meyer, 1996b). Regardless, the key difference between the CODH mechanism and the water gas reaction is that, in the enzyme, electron transfer is very rapid relative to H\(_2\) evolution because of the placement of the B and D clusters as electron acceptors, like a wire, between the C-cluster and the site at which external electron carriers bind.
TABLE 1
Key amino acid residues among the CODHs

<table>
<thead>
<tr>
<th>Organism* (acc #)</th>
<th>B-Cluster</th>
<th>D-Cluster</th>
<th>C-Cluster</th>
<th>A-Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rr (1JQK)</td>
<td>C50, C53, C58, C72</td>
<td>C41, C49</td>
<td>C300, C338, H265, C451, C481, C531</td>
<td></td>
</tr>
<tr>
<td>Ch (1JJY)</td>
<td>C48, C51, C56, C70</td>
<td>C39, C47</td>
<td>C295, C333, H261, C446, C476, C526</td>
<td></td>
</tr>
</tbody>
</table>

A. Ligands to the metal clusters in CODH and CODH/ACS

- FeS: C506, C509, C518, C528 NiP: C509, C595, C597 NiD: S of C595, C597 & backbone N of G596, C597

<table>
<thead>
<tr>
<th>Organism* (acc #)</th>
<th>Histidine tunnel</th>
<th>Acid base chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rr (1JQK)</td>
<td>H95, H98, H101</td>
<td>K568, H95, D223, W575</td>
</tr>
<tr>
<td>Ch (1JJY)</td>
<td>H93, H96, H99, H102</td>
<td>K563, H93, D219, W570</td>
</tr>
<tr>
<td>Mt (1OAO, 1MJG)</td>
<td>H113, H116, H119, H122</td>
<td>K587, H113, D241, W594</td>
</tr>
</tbody>
</table>

*Rr, *R. rubrum*; Ch, *C. hydrogenoformans* CODHII; Mt, *M. thermoacetica*.

![CODH Mechanism Diagram](image)

FIG. 7. Proposed CODH mechanism. Cred1, Cint, and Cred2 are different states of the C Cluster. Cox, which is not shown, is a diamagnetic state (Ni2+-Fe3+) that requires 1 electron reduction to the active Cred1 state.
FIG. 8. The water-gas shift reaction, an organometallic reaction sequence.

Structure of Ni-CODH. The X-ray crystal structure of CODH (Darnault et al., 2003; Dobbek et al., 2001; Doukov et al., 2002; Drennan et al., 2001) reveals a mushroom-shaped homodimeric enzyme containing five metal clusters (Clusters B, C, and D), as shown in the center of this figure of the CODH/ACS from *M. thermoacetica* (Figure 9). In this bifunctional enzyme, the CODH subunits (cyan and blue) contain the catalytic site of CO oxidation (the C-Cluster) and the redox centers (Clusters B and D) that transfer electrons to and from the C-Cluster. The orange and green ACS subunits at the periphery are discussed later. Buried 18 Å below the surface in each CODH subunit is a C-Cluster, which is a Ni-4Fe-5S (or Ni-4Fe-4S) cluster that can be viewed as a [3Fe-4S] cluster bridged to a heterobinuclear NiFe cluster. Rees (2002) noted that the structural motif for binding the C-Cluster, a four-stranded, parallel β-sheet surrounded by α-helices, is also found in other complex FeS metalloclusters, like nitrogenase and the Fe-only hydrogenase. The protein ligands to these clusters are found in loops positioned between two β strands. Converging just above the Ni center in the C-Cluster are a hydrophobic channel, proposed to deliver CO to the Ni center, and a solvent channel containing over 40 water molecules to deliver the other substrate, water.

Electrons generated during CO oxidation are transferred to a wire consisting of the B- and the D-Clusters, as shown in the CODH/ACS structure. While each CODH subunit contains a B-Cluster, the D-Cluster is shared by the two CODH subunits, similar to the FeS cluster in the iron protein of nitrogenase. Interestingly, it is the B-Cluster of the adjacent subunit that is suitably positioned to mediate the electron transfer between the C- and D-Clusters. The D-Cluster, which is nearest to the molecular surface, is likely to mediate electron transfer between CODH and the terminal electron acceptor (ferredoxin, flavodoxin, etc.). The reduced electron acceptors then couple to other energy, requiring cellular processes.

The same sequence of reactions just described run in reverse in CODH/ACS, which functions to convert CO₂ to acetyl-CoA, *i.e.*, here the CODH functions to produce CO, water from protons, and CO₂. Although the alpha carbon backbone of the CODH subunits from *M. thermoacetica*, *R. rubrum*, and *C. hydrogenoformans* overlay with a 0.8–1.0 Å root-mean-square deviation, two key alterations in CODH have occurred in the CODH/ACS class of proteins. It appears that the CO oxidation activity has been attenuated, with specific activities of 20,000 U/mg (per

FIG. 9. CODH/ACS structure. The purple and cornflower blue subunits in the center are ribbon drawings of CODH. The metal clusters are shown as spheres and labeled. The orange and forest green subunits at the periphery are ACS. C506 of ACS was identified as a site for interaction with the CFeSP. Residues 229–239 of ACS were identified as a site that interacts with ferredoxin. Trp418 of ACS was shown to interact with CoA. Generated using Chimera from 1MSG.
Based on spectroscopic studies of CODH, the C-Cluster was interpreted to contain a high spin (S = 1) Ni$^{2+}$ site connected through a bridging ligand to a [4Fe-4S]$^{2+/1+}$ cluster (Hu et al., 1996). The inability to detect a Ni-Fe interaction by X-ray absorption spectroscopy (XAS) was a major reason for dismissing the possibility that Ni could be part of the cubane (Tan et al., 1992). However, the high resolution (1.6 Å) X-ray structure of the as-isolated CODH from *C. hydrogenoformans* (Dobbek et al., 2001) revealed that the Ni ion is indeed incorporated in a NiFe$_4$S$_4$ cubane cluster, coordinated by four S atoms in a slightly distorted square planar geometry, and bridged to four Fe atoms through inorganic sulfide ligands with Ni and Fe distances ranging from 2.8 to 3.7 Å (Figure 10). In the 2.8 Å structure of *R. rubrum* CODH (Drennan et al., 2001) and the 1.9 Å structure of CODH/ACS (T.I. Doukov, C.L. Drennan, J. Seravalli, and S.W. Ragsdale, unpublished results; Doukov et al., 2002), the Ni site in the C-Cluster also is part of the cube and adopts a distorted five-coordinate geometry with 4 S and another unidentified ligand, and the Ni and Fe distances vary from 2.6 to 2.8 Å.

XAS of the *C. hydrogenoformans* CODH was used to assess these apparent discrepancies in ligand binding and Ni-Fe distances (Gu et al., 2004). The X-ray absorption K-edge energy (8340 eV) is consistent with a Ni$^{2+}$ assignment and, upon reduction with CO, the Ni K-edge changes only slightly, implying that the Ni remains in (or quickly returns to) the 2+ state upon reduction (Gu et al., 2004). The Ni extended X-ray absorption fine structure (EXAFS) spectrum of the as-isolated protein can be simulated with 4 Ni-S interactions at 2.20 Å without a Ni-Fe interaction. Simulation of the XAS spectra according to the crystal structure of the dithionite-treated enzymes indicates that the Ni-Fe vector was not detected by XAS because the distances are long and because heterogeneity in Ni-Fe vectors resulted in a destructive interference that veiled this interaction. Thus, the XAS-derived structure of the C-Cluster in the as-isolated enzyme is similar to the crystal structure of the dithionite-treated enzyme (Dobbek et al., 2001). When CODH is treated with CO or the strong reductant Ti(III) citrate, the Ni site becomes more tetrahedral as the average Ni-S distance expands to 2.25 Å and a new strong feature appears at 2.7 Å (see arrow) that is consistent with a Ni-Fe interaction. The changes between the two forms suggest that CO treatment causes the Ni

![Comparison of the C-Cluster structures of *C. hydrogenoformans* (left) and *R. rubrum* (right). Reprinted with permission from Gu et al., 2004.](image-url)
in the C-Cluster to move ~1 Å (shown by the red arrow), adopting a more tetrahedral geometry. These results (Gu et al., 2004) rationalize some of the apparent differences between the crystal structures of the C. hydrogenoformans (Dobbeck et al., 2001) and the R. rubrum (Drennan et al., 2001) proteins. It is unclear why the XAS spectra of as-isolated enzyme match the crystal structure of the dithionite-treated enzyme; perhaps the dithionite, an unstable reductant, underwent oxidation during the crystallization procedure.

Substrate access and binding to the active site. The first step in the CODH reaction is the binding of substrates, CO and H2O or CO2 and protons. Dobbeck et al. (2001) described a hydrophobic CO channel in the COOH-terminal domain of ACS and a hydrophilic, positively charged water channel that connects the surface and the C-Cluster in the C. hydrogenoformans CODH II (described above in the structure section).

An open coordination site above Ni in the C-Cluster was proposed to be the site of CO binding (Dobbeck et al., 2001; Drennan et al., 2001). This hypothesis is consistent with recent infrared (IR) studies of the M. thermoacetica CODH-CO complex in which multiple IR bands at 2078, 2044, 1970, 1959, and 1901 cm−1 were observed and attributed to Ni-CO in different states of the C-Cluster (see Figure 16 below; Chen et al., 2003). All IR bands attributed to M-CO species disappear in a time-dependent fashion as bands for metal-carboxylates (1724 and 1741 cm−1) appear, which is consistent with enzyme-catalyzed CO oxidation during the IR experiments. No M-CO bands are detected in as-isolated CODH/ACS, suggesting that, unlike the NiFe (Bagley et al., 1995; Happe et al., 1997) or Fe-only (Chen et al., 2002) hydrogenases, neither CODH nor ACS contain intrinsic M-CO ligands.

Catalysis of CO oxidation. What is the mechanism by which an enzyme like the C. hydrogenoformans CODH can catalyze the oxidation of CO to CO2 with a turnover number of 39,000 mol CO per mol enzyme per second and a kcat/Km of over 109 M−1s−1 (Svetlichnyi et al., 2001)? Furthermore, these enzymes can catalyze the reduction of CO2 to CO with a turnover number of 10 s−1 (Kumar et al., 1994) without imposing an overpotential (a potential above that required to reach ox/red equilibrium), while the catalysts used for industrial CO2 activation and reduction require an overpotential of about a volt. The C-cluster of CODH is the active site for the oxidation of CO to CO2. This conclusion is based on rapid kinetic studies, which show that the electron paramagnetic resonance (EPR) spectra of the C-Cluster change from the Cred1 to the Cred2 states (below) at rates commensurate with the rate of CO oxidation (Kumar et al., 1993). In addition, cyanide, which is a competitive inhibitor of CO oxidation with respect to CO, binds specifically to the C-Cluster (Anderson et al., 1993).

As shown in Figure 7, the catalytic cycle involves two half reactions. The first involves the chemistry of CO oxidation and reduction of the metal clusters (B, C, and D). The second half of the cycle is electron transfer from the reduced enzyme (C_red1, B_red, D_red) to ferredoxin. The C-Cluster has four redox states: Cox, C_red1, C_int, and C_red2. C_red1 and C_red2 can be observed by EPR spectroscopy. The midpoint potential of the Cox/C_red1 couple is approximately −200 mV, whereas that for the formation of C_red2 is −450 mV (Lindahl et al., 1990a). It is not known whether C_red2 is at the same redox state as C_red1 or is two-electrons more reduced. C_red1 appears to be the state that reacts with CO, since it disappears at the rate that C_red2 is formed (Kumar et al., 1993) and undergoes redox changes at a potential that matches that for catalysis (Feng & Lindahl, 2004). Earlier experiments had indicated a mismatch between the potentials for C-Cluster reduction and catalysis (Heo et al., 2001a, 2001b). The Cred1 state, which has a net electronic spin of 1/2 since it exhibits an EPR spectrum in the g = 2.0 region, is described as a [3Fe-4S]1+ cluster bridged to a binuclear Ni2+/Fe2+ site. Another possibility is that the 3Fe cluster has a net 1- core charge (Lindahl, 2002). Apparently, as described below, the Cred2 state also can bind CO (Seravalli et al., 1997).

Figure 7 shows CO and water binding to CODH and, based on electron nuclear double resonance (ENDOR) studies, it is likely that the water molecule binds to a metal center, presumably Fe (DeRose et al., 1998). The pKa of bound water would be significantly lowered and facilitate formation of an active hydroxide, as has been shown for a number of hydrolases, such as carbonic anhydrase (Bertini & Luchinat, 1994). A similar mechanism accounts for activation of metal-bound thiolates in methyltransferases (Gencic et al., 2001; Matthews & Goulding, 1997; Warthen et al., 2001). The active metal-hydroxide is then proposed to attack the M-CO complex. Several basic residues near the C-Cluster, including Lys563, His93, and His261, and several histidine residues were proposed to participate in these acid-base reactions (Figure 11) (Dobbeck et al., 2001; Drennan et al., 2001). The His residues are located on sequential turns of a helix, forming a His tunnel that begins near the C-Cluster and leads to the surface of the protein (shown in gold mesh). The His tunnel is proposed to deliver protons that are liberated during the reaction to the solvent.

Conversion of the metal-carboxylate to CO2 would reduce the C-Cluster by two electrons and form the C_red2 state, which is represented here as a 3Fe cluster in the 1-state and Ni and Fe still in the 2+-states. A Ni0 state has also been considered; in this case, the 3Fe cluster would not undergo redox changes (Lindahl, 2002). It is considered
that reduction of the B and D clusters would occur one electron at a time, which would leave a diamagnetic Cint state as an intermediate before Cred1 is reformed.

The catalytic cycle involves two half reactions. The first involves the chemistry of CO oxidation and reduction of the metal clusters (B, C, and D). The second half of the cycle is electron transfer from the reduced enzyme (Cred1, Bred, Dred) to ferredoxin. Cluster C of CODH/ACS undergoes changes in its EPR signal as it binds CO at near diffusion-controlled rates ($k = 2 \times 10^8$ M$^{-1}$s$^{-1}$) and delivers electrons to Cluster B (3,000 s$^{-1}$) at rates that are catalytically relevant for CO oxidation ($k_{\text{cat}} = 2000$ s$^{-1}$ and $k_{\text{cat}}/K_{\text{CO}}$ is 2×10^7 M$^{-1}$s$^{-1}$ at 55°C; Kumar et al., 1993). At high CO concentrations, the rate-limiting step in CO oxidation is the second half reaction, oxidation of the reduced enzyme by the electron acceptor; whereas at low CO concentrations, it is the intramolecular electron transfer from the C-Cluster to the B-Cluster (Kumar et al., 1993; Seravalli et al., 1997). The intramolecular electron transfer reaction is also rate limiting when CODH is rapidly mixed with CO during single turnover kinetics in the absence of electron carriers.

The wire. Oxidation of CO is coupled to the one-electron reduction of the B-Cluster and another redox center in the protein, which has been called X and may be the D-Cluster. So far, redox changes in the D-Cluster have not been observed. The B- and D-Clusters form an intramolecular wire that connects the catalytic C-Cluster to external electron acceptors/donors (Figure 12). The distance between the nearest Fe atoms of the B- and C-Clusters is ca. 11 Å, while only 8 Å separate the nearest sulfur atoms of cysteine residues 470 and 71. Similarly, between the

FIG. 11. Cluster C and potential acid base chemistry. Fe, S, and Ni atoms are colored orange, yellow, and cyan, respectively. The surface from H99 to H102 is shown as gold mesh. From IJY using Chimera. The numbering is based on the *C. hydrogenoformans* sequence.

FIG. 12. Metal clusters in CODH. The loops on which the amino acid side chains that ligate the clusters are colored separately to indicate that electron transfer must occur between the C-Cluster of one subunit and the B-Cluster of the other. The distance between the C and B-Clusters of a single subunit is 28 Å, which is too long for effective electron transfer.
nearest sulfur atoms of the B- and D-Clusters, the distance is only 7 Å (sidechains of Cys67 and Cys68), while the nearest Fe atoms are ca. 11 Å apart. These distances would allow rapid electron transfer (Page et al., 1999). The reduction of “X” is required to balance the electron transfer reaction and to explain the rapid reaction kinetics and the potentiometric titrations of CODH with CO and other reductants (Seravalli et al., 2002). Thus, at the end of this reductive half of the catalytic cycle, CODH has undergone a four-electron reduction. Closure of the catalytic cycle involves coupling the intramolecular wire to an external electron carrier protein.

Cluster D is partially surface exposed and is in suitable position to mediate electron transfer between the B-Cluster and the many external mediators to which CODH can couple. This enzyme can efficiently transfer electrons to rubredoxin, methylene blue, a 4Fe and 8Fe ferredoxin, benzyl viologen, flavodoxin, and methyl viologen, with the rates decreasing in that order (Ragsdale et al., 1983a). As an electron acceptor, CODH efficiently accepts electrons directly from pyruvate ferredoxin oxidoreductase (kcat/Km = 7 × 107 M−1 s−1, similar to the specificity for ferredoxin; Menon & Ragsdale, 1996a). It also donates electrons to an Fe-only hydrogenase (Ragsdale & Ljungdahl, 1984a), the corrinoid iron-sulfur protein (Ragsdale et al., 1987), low-potential artificial acceptors like triquat, and very high-potential acceptors like cytochrome c.

When CO is produced from CO2 by CODH/ACS by reversal of these reaction steps, a reduced electron donor transfers electrons to Clusters B and D, which reduce Cluster C. The C_red2 state then undergoes oxidation, reducing CO2 to CO.

CO CHANNELING

In CODH/ACS, the CO that is generated by the steps just described is channeled to ACS for acetyl-CoA synthesis.

Gas Channels in Proteins

There are few examples of gas channels in proteins. Proteins that have been proposed to transport ammonia (Soupene et al., 2002a) and CO2 (Soupene et al., 2002b) have been reported.

Gases can occupy any hydrophobic cavities in proteins. NMR spectroscopy has been used to identify hydrophobic cavities in lysozyme by measuring the dipole-dipole interactions between water protons and the protons of several gases (H2, CH4, ethylene, or cyclopropane; Otting et al., 1997). Channels are also located in proteins by X-ray crystallography (Schiltz et al., 2003). Hydrogenase and CODH crystals have been treated with Xe under pressure and flash frozen to locate the channels (Darnault et al., 2003; Montet et al., 1997). The noble gas serves as a heavy atom reporter for the gas channel and can be used to help in phasing of the structure. Since any cavity in the protein can be occupied by the gas, in proteins like hydrogenase and CODH/ACS that use gases, the key issue appears to be directing the gas to and from a particular active site and preventing it from diffusing into nonproductive pathways.

Biochemical Evidence for a CO Channel

Biochemical results strongly indicate that in CODH/ACS, CO derived from CO2 migrates from the C-Cluster through a channel in the interior of the protein to the A-Cluster in the ACS subunit (Figure 13) (Maynard & Lindahl, 1999; Seravalli & Ragsdale, 2000). In one set of experiments, the effect of unlabeled CO on incorporation of label from 14CO2 into acetyl-CoA was measured. If the CO is released from the protein before binding to the A-Cluster, it would equilibrate with CO in solution and decrease the incorporation of label from 14CO2. However, even saturating levels of CO did not decrease the incorporation of CO2-derived CO into the carbonyl group of acetyl-CoA (Seravalli & Ragsdale, 2000). Furthermore, the rate of acetyl-CoA synthesis from CO2, CH3-H4folate, and CoA was significantly faster than the rate with CO, CH3-H4folate, and CoA (Maynard & Lindahl, 1999). In addition, hemoglobin, which tightly binds CO, only partially inhibits the synthesis of acetyl-CoA from CH3-H4folate, CoA and pyruvate (Menon & Ragsdale, 1996a). Accordingly, no inhibition by hemoglobin was observed in the synthesis from CO2 (Maynard & Lindahl, 1999). Hemoglobin and myoglobin also only partially inhibit the exchange reaction between CO2 and acetyl-CoA (Seravalli & Ragsdale, 2000).

These results provide strong evidence for the existence of a CO channel between the C-Cluster in the CODH subunit and the A-Cluster in the ACS subunit. It has been proposed that this channel may be involved in synchronizing cluster activities, increasing the local concentration of CO at the A-cluster, and/or directing CO to a productive rather than inhibitory binding site on the A-cluster (Doukov et al., 2002). Such a channel would tightly couple

FIG. 13. CO channel in CODH/ACS. This figure shows that CO derived from CO2 during synthesis of acetyl-CoA does not equilibrate with solvent, but remains sequestered within a channel that connects the C-Cluster in CODH to the A-Cluster in ACS.
CO production and utilization and help explain why very low levels of CO escape into the growth medium of acetogenic bacteria. Since CO is a rich electron donor, it is important that microbes sequester the CO and ensure that the energy devoted to the synthesis of CO is not lost. The channel would also protect aerobic organisms that harbor the microbes by preventing CO from escaping into solution and maintaining CO below toxic levels.

Atomic Resolution Structure of the Channel

A 67 Å hydrophobic channel that connects the A- and C-Clusters was located using the program CAVENV (Doukov et al., 2002). Since this channel connects the C- and A-Clusters of both pairs of subunits, its total length is \(\sim 138 \) Å. This channel has been observed by X-ray diffraction studies of Xe-pressurized crystals (Darnault et al., 2003). Dobbeck et al. (2001) had identified one end of a hydrophobic channel just above the Ni site of the C-Cluster of CODH. This would be the beginning of the CO channel for the CODH/ACS. Recent Xe studies demonstrate that the other end of the channel is within bonding distance of the proximal Ni site of the A-Cluster (T.I. Doukov, C.L. Drennan, J. Seravalli, and S.W. Ragsdale, unpublished data).

As described below, there is a major conformational change in ACS that exposes the A-Cluster to solvent, which could compromise the integrity of the channel. However, the open channel observed in one state (the closed state, see below) of the enzyme is closed by movement of a helix (residues 143–148 of the Mt enzyme) when the A-Cluster is exposed to solvent (Darnault et al., 2003).

One might ask why nature has placed the A- and C-Clusters so far apart. It seems that a CODH/ACS docking site near the A-Cluster would make the channel unnecessary. Perhaps nature has placed the A-Cluster and C-Cluster (or any of the CODH clusters) far enough apart that oxidation of the A-Cluster is not feasible under physiological conditions. This would isolate the A-Cluster from the redox chemistry associated with CO oxidation and help maintain the NiP site in its catalytically active reduced form.

CO UTILIZATION: CELL CARBON FROM CO

ACS Structure

Overall structure of ACS. The orange and green ACS subunits shown in Figure 9 consist of three domains that are connected by long flexible loops. Residues 1–312 in the first domain form a Rossman (six-stranded \(\alpha/\beta \)) fold and form the interface with CODH. Interestingly, this domain is missing in the methanogenic cdhC (the beta subunit), which contains the A-Cluster. This domain also contains a ferredoxin-binding region (shown in Figure 9 with the purple surface), which was identified by crosslinking the ferredoxin-CODH/ACS complex, cleaving with cyanogen bromide, and sequencing (Shanmugasundaram & Wood, 1992). Residues in the Fd-binding domain are ca. 10 Å from the A-Cluster; thus, a ferredoxin–ACS complex could be involved in activation of the A-Cluster and in any internal electron transfer reactions that occur during the ACS reaction. The second domain (residues 313–478) contains Trp418 close to six Arg residues. Based on two experiments, Arg residues have been implicated in binding CoA. The fluorescence of Trp418 is quenched upon CoA binding (Shanmugasundaram et al., 1988), and phenylglyoxal, which is a rather specific Arg modification reagent, inhibits CoA binding (Ragsdale & Wood, 1985). The third domain (residues 479–729) contains the ligands to the A-Cluster (see Table 1). Cys506 was identified to form a disulfide bond with a thiol group on the CFeSP (Shanmugasundaram et al., 1993).

Although all the CODH structures are highly similar, the ACS subunits in the two M. thermoacetica crystal structures exhibit different conformations. In Figure 9, the orange subunit is in an open conformation in which the A-Cluster is more solvent exposed, while the green ACS subunit is in the closed conformation. Except for the position of one helix, the N-terminal domains of the open and closed structures overlay; however, the second and third domains in the two conformations are rotated as a rigid body by ca. 50°. This rotation explains two important aspects of the ACS mechanism. The first major issue relates to the need to interface ACS with the CFeSP. The methyl group transfer from the CH3—Co-orrinoid to the Ni of the A-cluster appears to occur by an SN2 mechanism (Menon & Ragsdale, 1998, 1999), which requires the Co-CH3 to be positioned directly above the NiP in the A-Cluster. In the closed state, there is insufficient space for B12 or the CFeSP to interact with the A-Cluster. However, in the open state, the exposed A-Cluster is more accessible to allow docking of the CFeSP and facilitate transfer of the methyl group from Co to the A-Cluster. Thus, a major conformational change appears to be coordinated with each catalytic cycle. However, solvent exposure of the A-Cluster to solvent presents a problem: CO must be retained in the channel until it binds to the metal site to undergo condensation with the methyl and CoA groups. This is accomplished by a closure of the CO channel when the protein adopts the open conformation by the movement of a helix in the N-terminal domain. When ACS reads the closed conformation, this helix moves again to open the channel.
bridged to another Ni ion in a thiolato- and carboxamidotype N₂S₂ coordination environment (Figure 14, Table 1) (Doukov et al., 2002). Thus, one can describe the A-Cluster as a binuclear NiNi center bridged to a [4Fe4S] cluster. A proposal that Cu is a component of active ACS (Doukov et al., 2002; Seravalli et al., 2003), met with immediate criticism (Bramlett et al., 2003; Darnault et al., 2003; Gencic & Grahame, 2003; Hausinger, 2003) based first on studies on the methanogenic ACS (ACDS) from the Grahame laboratory (Gencic & Grahame, 2003). Metal analyses on recombinant and native methanogen ACDS β subunit showed insignificant levels of copper, and an Fe:Ni ratio of 2:1 consistent with 2Ni per [4Fe-4S] cluster. Using apo-ACDS β subunit, Grahame and Gencic showed that a reconstituted Ni–Ni form of the A-Cluster had activity, while a Cu–Cu form did not. Based on metal reconstitution experiments (using Cu²⁺ and Ni) with the acetogenic enzyme, Fontecilla-Camps and Lindahl concluded that the CuNi form of ACS is inactive and the NiNi form is active (Bramlett et al., 2003). However, the above experiments were not unambiguous since activity of the CuNi methanogenic enzyme was not tested (Gencic & Grahame, 2003) and, with the acetogenic CODH/ACS, added Cu²⁺ inhibited both ACS activity of the A-Cluster and CODH activity at the C-Cluster (Bramlett et al., 2003). The most serious questions about the activity of the CuNi form of the enzyme were based on the demonstration that removal of Ni by o-phenanthroline (ophen) results in loss of ACS activity and that readdition of Ni restores activity (Russell et al., 1998; Shin & Lindahl, 1992); however, since the presence of Cu in CODH/ACS was unknown at that time, the effect of Cu addition was not addressed.

Determining unambiguously whether the CuNi or the NiNi enzyme is active proved to be challenging. The initial proposal that Cu was an active component of ACS was based on a positive correlation between Cu and activity with samples, where metal occupancy was in the range 1.6–2.3 Ni per αβ and 0.25–0.96 Cu per αβ unit (Seravalli et al., 2003). This correlation relied on the assumption of uniform occupancy of Fe and Ni in the other metal sites in this protein, with 17 metal sites per αβ unit. However, a negative correlation was found when using a larger number of samples with a larger range in metal occupancy: 1.6–2.8 Ni per αβ and 0.2–1.1 Cu per αβ (Seravalli et al., 2004). Furthermore, a positive correlation with Ni (including a slope of 0.5 for the NiFeC signal intensity versus Ni, indicating both Niₚ and Niₐ are required) and a negative correlation with Cu strongly indicates that the CuNi enzyme is inactive and the NiNi is active (Seravalli et al., 2004). Similar results were recently published from the Meyer and Huber groups (Svetlitchnyi et al., 2004). Furthermore, a protocol to generate nearly homogeneous preparations of ACS with a NiFeC signal intensity of ~0.8 spins per mol was achieved by removing Cu with o-phenanthroline and replacing the Cu with Ni (Seravalli et al., 2004). In addition, only Ni, not Cu¹⁺ (which was shown by XAS studies to bind to the Mp site), restores activity in o-phenanthroline–treated ACS.

Recent DFT calculations (described below) also indicate that a paramagnetic state of the A-Cluster, called the NiFeC species, could derive from the NiNi, but not the CuNi form of the enzyme (Schenker & Brunold, 2003). Multifrequency EPR studies also are inconsistent with the NiFeC EPR signal arising from the CuNi enzyme (Seravalli et al., 2004).

To summarize, it now seems clear that the NiNi form of ACS is active and that the CuNi and the ZnNi forms are not. The apparent vulnerability of the proximal metal site in the A-Cluster to substitution with different metals appears to underlie the heterogeneity observed in samples that has confounded studies of CODH/ACS for many years. Development of a method to replace zinc with Ni would likely produce absolutely homogeneous and fully active ACS.
The FeS cluster component of the A-Cluster is coordinated by four Cys residues, Cys506, Cys509, Cys518, and Cys528, resembling typical [4Fe-4S] clusters found in clostridial ferredoxins, in agreement with EPR (Ragsdale et al., 1985), M"ossbauer (Lindahl et al., 1990b; Russell et al., 1998), and ENDOR (Fan et al., 1991) spectroscopic data. Cys509 bridges the [4Fe-4S] cluster and the binuclear site, similar to the Fe-only hydrogenases in which a [4Fe-4S] and a binuclear Fe site are bridged by a Cys residue (Nicolet et al., 2000; Peters et al., 1998). The proximal Ni, i.e., the one closest to the [4Fe-4S] cluster, is coordinated by Cys595, Cys597, and the bridging Cys509. The distal Ni atom has square planar geometry and is coordinated by the sidechains of Cys595 and Cys597 and by two backbone N atoms of Gly596 and Cys597. In one ACS structure, Cu was in high occupancy, forming a binuclear CuNi center (Doukov et al., 2002). In another structure of the same enzyme from the same source (M. thermoacetica) containing two ACS molecules in the asymmetric unit, Ni replaced Cu in one A-Cluster (the NiNi enzyme) and Zn was present in the other (ZnNi) (Darnault et al., 2000; Peters et al., 1998). The binuclear nickel active site of the heterologously expressed methanogenic ACS (ACDS, the beta subunit of the five-subunit complex) was studied by XAS and X-ray MCD (Funk et al., 2004; Gu et al., 2003). Two distinct Ni environments were observed: one Ni appears to be square planar, presumably Ni$_d$, and the other tetrahedral or distorted tetrahedral (apparently Ni$_p$), which is consistent with the crystal structures. In the as-isolated enzyme, planar Ni$_d$ is low spin and Ni$_p$ is high spin. Reduction with Ti$_3^{2+}$-citrate or CO in the presence of Ti$_3^{2+}$-citrate appears to reduce some of the Ni$_p$ from Ni$_{2+}$ to Ni$_{1+}$ and a portion of the [4Fe-4S] cluster from the 2$^+$ to the all-ferrous 0$^+$ state. In the CO/Ti$_3^{2+}$-treated sample, the tetrahedral high-spin Ni$_{2+}$ (Ni$_p$) appeared to convert to low-spin Ni$_{2+}$ (Funk et al., 2004), and a feature developed at 2.7 Å that was assigned to a Ni–Fe interaction (Gu et al., 2003). Under all redox conditions, a 2.95 Å vector, assigned to a Ni–Ni interaction was observed. The X-ray absorption near edge spectroscopy (XANES) spectra appear to be inconsistent, with a proposed Ni0 formulation in any of the states studied. Since the XAS and X-ray MCD studies did not find evidence for significant amounts of Ni$_{1+}$ in the CO-treated sample, it was concluded that reduction of the A-Cluster to form the NiFeC species localizes the radical primarily at a site other than Ni. However, recent computational and spectroscopic studies, described below, indicate that the NiFeC species contains Ni$_{1+}$-CO (Schenker & Brunold, 2003; Seravalli et al., 2004).

What is the electronic state of the active form of the NiNi enzyme, which is responsible for an EPR signal called the NiFeC signal? Recent Density Functional Theory (DFT) calculations support a model that includes a [4Fe-4S]$^{2+}$ cluster linked to Ni$_{1+}$ at the M$_p$ site, which is bridged to a Ni$^{2+}$ at the M$_d$ site (Schenker & Brunold, 2003). In this model, the spin resides predominantly on the Ni$_{1+}$, which has an electronic spin, S = 1/2, since the other components of the A-Cluster have net spins, S = 0. The NiFeC-eliciting species is described as a [4Fe-4S]$^{2+}$ (net S = 0) cluster bridged to a Ni$_{1+}$ (S = 1/2) at M$_p$ that is bridged to square planar Ni$_{2+}$ (S = 0) at M$_d$, with the spin predominantly on the Ni$_{1+}$. The carbonyl group of the NiFeC species also has spin density based on the observation of 13CO hyperfine splittings (Ragsdale et al., 1983b, 1985). A bridging carbonyl would be a mechanistically interesting possibility; however, the high C–O vibrational frequency (1996 cm$^{-1}$) clearly indicates a terminal CO bound to one metal (Chen et al., 2003; Kumar & Ragsdale, 1992).

Catalysis: The Condenser of the CODH/ACS Machine. ACS catalyzes the final steps of the Wood-Ljungdahl pathway in which a methyl group, CO, and CoA are condensed to form acetyl-CoA at the A-Cluster of ACS (Figure 15) (also see Fontecilla-Camps and Ragsdale, 1999; Seravalli et al., 1999). In the mechanistically related Monsanto industrial process, a rhodium complex catalyzes acetate formation from methanol and CO in the presence of H$_2$ through methyl-Rh, Rh–CO, and acetyl-Rh organometallic intermediates. There are three major controversial issues in the ACS catalytic mechanism: (1) whether the catalytic cycle occurs through diamagnetic or paramagnetic intermediates (in Figure 15, both the paramagnetic and diamagnetic mechanisms are presented); (2) whether the central nucleophilic species is a Ni$_0$, Ni$_{1+}$, or Ni$_{2+}$ species; and (3) whether the first step in acetyl-CoA synthesis is carboxylation or methylation (here I have presented carboxylation as the first step in both mechanisms). These issues are addressed in a series of articles recently published in the *Journal for Biological Inorganic Chemistry* (Brunold, 2004; Drennan et al., 2004; Lindahl, 2004; Vobeda & Fontecilla-Camps, 2004).

As shown in Figure 15, a channel directs CO to the Ni$_p$ site of the A-Cluster of ACS (Doukov et al., 2002). CO is shown as the first substrate to bind to Ni. In the paramagnetic mechanism (upper figure), the NiFeC species (above) is formed as the central intermediate. This metal-CO complex has been observed by IR (Chen et al., 2003; Kumar & Ragsdale, 1992) and EPR (Ragsdale et al., 1985) spectroscopy (as the NiFeC species) (Figure 16). The NiFeC EPR signal has g values at 2.08 and 2.02, and exhibits 61Ni, 125C, and 57Fe hyperfine interactions (Fan et al., 1991; Ragsdale et al., 1985). The NiFeC species has been demonstrated to be catalytically competent intermediate in acetyl-CoA synthesis (Seravalli et al., 2002); in the upper mechanism this paramagnetic Ni$_{1+}$-CO intermediate is the species that undergoes methylation. One complication of the paramagnetic mechanism is that methylation of ACS clearly generates a diamagnetic product (Barondeau &
FIG. 15. Two proposed ACS mechanisms. Steps leading to the carbonyl group of acetyl-CoA are shown in blue, while steps involved in forming the methyl group are shown in red. The top figure has been called the paramagnetic mechanism involving the \(\text{Ni}^{2+} \)-\(\text{NiFeC} \) species as a central intermediate. The bottom figure is the author’s interpretation of a version of the diamagnetic mechanism, which includes a \(\text{Ni}^{0} \) state as the central intermediate. See the text for details.
Lindahl, 1997; Seravalli et al., 2002). Therefore, in the paramagnetic mechanism, an internal electron transfer step is proposed, which prior to, coincident with, or preceding methylation generates methyl-Ni$^{2+}$. This electron is returned to the donor in the final stages of the catalytic cycle as described below.

The lower scheme in Figure 15 describes a catalytic cycle involving only diamagnetic intermediates (Barondeau & Lindahl, 1997), which involves Ni0 as the key intermediate (Darnault et al., 2003). In this mechanistic proposal, the paramagnetic NiFeC state is considered to be an inhibited form of the enzyme (Darnault et al., 2003; Tan et al., 2002). The diamagnetic mechanism starts by reductive activation of the enzyme to the Ni0 state, which undergoes carbonylation to form a Ni$^{1+}$-CO complex that is methylated by the methylated CFeSP to directly form methyl-Ni2+.

There are chemical precedents supporting both Ni0 and Ni$^{1+}$ active sites. A model containing a binuclear Ni$^{1+}$-Ni$^{2+}$-active site similar to that observed in ACS was shown to form a Ni0-(CO)$_2$ complex (Linck et al., 2003). However Ni0-carbonyls are well known and are not considered especially reactive. A Ni$^{1+}$-CO complex with an IR stretch (1995 cm$^{-1}$) similar to that of the NiFeC species (above, 1996 cm$^{-1}$) has been recently characterized, (Craft et al., 2003) and, as described below, methylation of a Ni$^{1+}$ complex by a methyl-Co$^{3+}$ complex, similar to the next step in the ACS reaction sequence, has also been characterized (Ram & Riordan, 1995; Ram et al., 1997). Recent density functional calculations support a Ni0 mechanism with methylation preceding carbonylation (Webster et al., 2004) as well as a Ni$^{1+}$ mechanism with the opposite binding sequence (Schenker & Brunold, 2003).

The next step in the ACS mechanism is methylation of the A-Cluster by the methyl-Co$^{3+}$ form of the CFeSP (Seravalli et al., 2002). Based on rapid kinetic studies, this reaction appears to occur by the S_N2-type nucleophilic attack of Ni$_p$ on the methyl group of the methylated CFeSP (CH$_3$-Co$^{3+}$) to generate methyl-Ni and Co$^{1+}$ (Menon & Ragsdale, 1998, 1999). This mechanism is reminiscent of the reactions of cobalamin-dependent methyltransferases like methionine synthase (Banerjee & Ragsdale, 2003; Matthews, 2001) and is supported by stereochemical studies using a chiral methyl donor (Lebertz et al., 1987). This transmethylation reaction is reversible and is linearly dependent on methyl-CFeSP (forward reaction) or CFeSP (back reaction), yielding second-order rate constants of $0.047 \mu M^{-1} s^{-1}$ (forward) and $0.4 \mu M^{-1} s^{-1}$ (reverse).
with a K_{eq} of 0.12 (Seravalli et al., 2002). In another set of studies, when this reaction was modeled as a three-step process, the methylation rate constant was 12 $\mu M^{-1}s^{-1}$ (forward) and the reverse rate constant was 2 $\mu M^{-1}s^{-1}$ (Tan et al., 2003). Thus, the Ni$^{2+}$ site on ACS appears to be about as effective as Co$^{1+}$-CFeSP as a methyl group acceptor. At low CO concentrations, formation of this intermediate is rate limiting in the overall pathway of acetyl-CoA synthesis; however, at higher CO concentrations (which inhibit acetyl-CoA synthesis Maynard et al., 2001), methyl transfer becomes rate limiting (Seravalli et al., 2002). It is the methyl transfer step that is inhibited by CO, perhaps by the binding of a second CO to the site of methylation (Seravalli et al., 2002). What state of ACS is the methyl acceptor? Based on studies of the overall reaction sequence of ACS by rapid kinetics, steady-state kinetic experiments and kinetic simulations (Seravalli et al., 2002), the NiFeC species is kinetically competent in the acetyl-CoA synthesis catalytic cycle.

As described above in the ACS structure section, the recent crystal structures provide strong evidence for major conformational changes during this reaction. There is evidence that the methyl group binds to the labile Ni site of the A-Cluster (Barondeau & Lindahl, 1997; Shin et al., 1993) that, based on XAS studies, appears to be Ni$_p$ (Seravalli et al., 2004). Kinetic and spectroscopic studies indicate that this methyl transfer involves an S_N2 reaction (Menon & Ragsdale, 1999). Interestingly, in model studies of the reaction between methyl-Co$^{3+}$ (CH$_3$-Co$^{3+}$ dimethylglyoximate) and a Ni$^{3+}$ macrocycle, transfer of a methyl radical is favored over a methyl cation transfer. Two equivalents of the Ni$^{3+}$ complex were required, one to reduce methyl-Co$^{3+}$ to methyl-Co$^{2+}$ and the other to capture the methyl radical generated upon cleavage of the methyl-Co$^{2+}$ species (Ram & Riordan, 1995). Follow-up experiments with these model reactions using radical traps also support a methyl radical transfer reaction (Ram et al., 1997). However, Martin and Finke (1990) pointed out that for the enzymatic system, homolysis of the CH$_3$-Co bond could not occur because reduction of CH$_3$-Co$^{3+}$ requires redox potentials (<-1 V) that are too low for physiological electron donors.

The methyl transfer step as shown in Figure 15 includes a one-electron shuttle, i.e., one electron is donated during the methylation and an electron is lost after CoA binds. Inclusion of this redox step in the ACS mechanism would explain why reaction of the NiFeC species with the methylated CFesP generates a diamagnetic methyl-Ni$^{2+}$ product (Barondeau & Lindahl, 1997; Seravalli et al., 2002). If a methyl-Ni$^{3+}$ were generated, it would be EPR active. Another reason that a methyl-Ni$^{3+}$ species is not favored is that it would be highly oxidizing and quite reactive (Thauer, 1998). One obvious candidate for this one-electron shuttle is the [4Fe-4S] subcomponent of the A-Cluster, which is only a spectator in the two schemes shown in Figure 15. Demonstration that this cluster undergoes reduction at a slower rate than the methyl group is transferred apparently rules out such a role for this cluster (Tan et al., 2003); however, if the methylation and reduction were coupled, the rate of reduction of the cluster could increase significantly. On the other hand, perhaps it serves only as a conduit for electron transfer to the Ni. Lindahl's diamagnetic Ni0 mechanism avoids the need for redox shuttling because reaction of a methyl cation with Ni0 would directly generate a diamagnetic CH$_3$-Ni$^{2+}$. The significant stimulation of the CO/acetyl-CoA exchange reaction, which does not involve net redox chemistry, by ferredoxin and other one-electron carriers is considered to support an internal electron transfer reaction during catalysis (Ragsdale & Wood, 1985). The ferredoxin-binding site shown in purple in the CODH/ACS structure is close enough to participate in shuttling (donating and then receiving) one electron during this reaction.

Carbon–carbon bond formation, the next step in the catalytic cycle, occurs by condensation of the methyl and carbonyl groups to form an acetyl-metal species. There is evidence that this intermediate was trapped in crystals of CODH/ACS incubated in a solution containing high concentrations of acetate (Doukov et al., 2002).

The final steps in the catalytic cycle involve binding of CoA and thiolysis of the acetyl-metal bond. CoA appears to ligate to the proximal metal site in the A-Cluster, based on the observation of a Se-Cu bond by EXAFS of the CuNi form of CODH/ACS incubated with seleno-CoA (Seravalli et al., 2003). In the diamagnetic mechanism, the two electrons liberated during the thiolysis are used to reduce the Ni$^{2+}$ back to catalytically active Ni0. In the paramagnetic mechanism, one electron reduces Ni$^{2+}$ back to Ni$^{3+}$ and the other is returned to the one-electron shuttle.

Thus, the Wood-Ljungdahl pathway appears to represent a prototypical bio-organometallic pathway involving, like the Monsanto process, methyl-metal, metal-CO, and acetyl-metal intermediates. Interestingly, when ACS undergoes reductive activation and binds CoA and the methylated CFesP, the rate of CO formation by CODH and acetyl-CoA synthesis by ACS become synchronized (Maynard & Lindahl, 2001). The structural transformations accompanying this transformation are not known, but may relate to alterations in function of the CO channel or the rate of the conformational change described above. Uncovering how these active sites are coupled is an exciting area for future research.

Other Wood-Ljungdahl Pathway Enzymes Required for CO Utilization

The focus of this review so far has been on CODH and CODH/ACS since these enzymes are key to CO
metabolism. However, for organisms that use the Wood-Ljungdahl pathway (Figure 1), a number of additional enzymes are required.

Conversion of CO₂ to CH₃-H₄ folate. The methyl or Eastern branch of this pathway (Figure 1) includes five enzymes required for catalyzing the synthesis of the methyl group of CH₃-H₄ folate from CO₂ (Ljungdahl, 1986; Ragsdale, 1991). These include formate dehydrogenase, which converts CO₂ to formate (Andreesen et al., 1991) and formyl-H₄ folate synthetase, which catalyzes the ATP-dependent conversion of formate to 10-formyl-H₄ folate (Brewer et al., 1970; Lovell et al., 1990; Sun et al., 1969), which is converted by a cyclohydrolase to 5,10-methenyl-H₄ folate (Clark & Ljungdahl, 1982). Next, a dehydrogenase reduces the 5,10-methenyl H₄ folate to the CFeSP (Figure 17) also has been reviewed (Ragsdale, 2003a, 2003b). Recent studies have shown that this reaction is mediated by a cyclohydrolase (Clark & Ljungdahl, 1984; Park et al., 1991). Since these reactions were reviewed in 1991 (Ragsdale, 1991) and 2003 (Ragsdale, 2003a), it is unnecessary to cover them here. A similar series of reactions is involved in the conversion of formate to methyltetrahydropterin by methanogens and these reactions also were recently reviewed (Ragsdale, 2003a).

Conversion of CH₃-H₄ folate to CH₃-CFeSP. The MeTr-catalyzed transfer of the methyl group of CH₃-H₄ folate to the CFeSP (Figure 17) also has been reviewed recently (Banerjee & Ragsdale, 2003) and will only be briefly covered here. In 1984, Hu et al. partially purified a corrinoid-containing protein that accepts the methyl group of CH₃-H₄ folate to form methyl-cobamide (Hu et al., 1984). This protein was then purified to homogeneity and, because it was shown to contain an iron-sulfur cluster, was named the **corrinoid iron-sulfur protein** (CFeSP) (Ragsdale et al., 1987). The CFeSP accepts the N⁵ methyl group of CH₃-H₄ folate in a reaction catalyzed by methyltransferase (MeTr) (Drake et al., 1981) and then transfers this methyl group to the A-Cluster on demethylated CODH/ACS (above). This reaction initiates the carbonyl or Western branch of the acetyl-CoA pathway. MeTr has been purified to homogeneity (Drake et al., 1981), and its structure was determined by X-ray crystallography (Doukov et al., 2000), demonstrating that it belongs to the class of “TIM-barrel” proteins. The MeTr gene has been cloned, sequenced, and overexpressed in an active form in *E. coli* (Roberts et al., 1989, 1994).

Although MeTr can use either vitamin B₁₂ or the CFeSP as the methyl acceptor, its specificity (k_{cat}/K_m) for the CFeSP is 100-fold greater than that for free B₁₂ (Zhao et al., 1995). The steps in the MeTr mechanism include: (1) a pH-dependent conformational change in MeTr (Zhao & Ragsdale, 1996), (2) CH₃-H₄ folate and the CFeSP binding to MeTr in a rapid equilibrium fashion to form a ternary complex, (3) protonation of the N-5 of CH₃-H₄ folate, (4) methyl transfer from CH₃-N of the pterin to Co₁⁺ to form H₄ folate and CH₃-CFeSP, and (5) products dissociation (Seravalli et al., 1999). The protonation step is required for electrophilic activation of the methyl group, making it more susceptible to nucleophilic displacement by the cob(amide) state of the CFeSP.

Besides electrophilic activation of CH₃-H₄ folate, this reaction also requires reductive activation of the CFeSP. This is because the transmethylation reaction requires the Co₁⁺ state, and once in every 100 turnovers the cobalt center undergoes irreversible oxidation to the inactive Co²⁺ state (Menon & Ragsdale, 1999). The low potential [4Fe-4S] cluster is required to mediate electron transfer from physiological electron donors to the cobalt center (Menon & Ragsdale, 1998), which regenerates the active Co¹⁺ state. The CFeSPs of acetogens and methanogens are unusual in that they lack either an intramolecular benzimidazole base or a histidine residue (that ligates to Co in many B₁₂ proteins) (Ragsdale et al., 1987; Wirt et al., 1993, 1995). The absence of this ligand makes the Co-bound methyl group more susceptible to nucleophilic attack and increases the midpoint potential of the Co²⁺/¹⁺ couple by about 150 mV, which would allow the cell to maintain more Co in the active Co¹⁺ state (Harder et al., 1989). Thus, controlling cobalt coordination chemistry prevents Co¹⁺ from dropping out of the catalytic cycle.

![FIG. 17. Methyl transfer to form the first organometallic intermediate in the Wood-Ljungdahl pathway. The Co¹⁺ state of the CFeSP, which is the active state, is in redox equilibrium with Co²⁺, which requires reductive activation to reenter the catalytic cycle.](image-url)
Conversion of Acetyl-CoA to Pyruvate. PFOR catalyzes the thiamine pyrophosphate (TPP)-dependent oxidative decarboxylation of pyruvate to form acetyl-CoA and CO₂ (Equation (7)). A detailed review of PFOR was published this year, so this section will be brief (Ragsdale, 2003b). All members of the Archaea kingdom appear to contain PFOR, and it is widely distributed among anaerobic bacteria and anaerobic protozoa like G. arida (Hornor et al., 1999). PFORs has been isolated from the acetogenic bacterium *Moorella thermoacetica* (f. *Clostridium thermoacetica*) (Drake et al., 1981; Menon & Ragsdale, 1996a) and other Clostridia (Uyeda & Rabinowitz, 1971) from the methanogenic archaeae, *Methanosarcina barkeri* (Bock et al., 1994) and *Methanothermobacter thermautotrophicum* (Tersteegen et al., 1997), and from several hyperthermophilic archaeae (Adams & Kletzin, 1996).

The oxidation of pyruvate by PFOR generates low potential electrons (Eo' = −540 mV) that reduce ferredoxin or flavodoxin (Brosted & Nordlund, 1991; Cammack et al., 1980; Hughes et al., 1995; Kerscher & Oesterhelt, 1982; Kletzin & Adams, 1996; Wahl & Orme-Johnson, 1987). This reaction occurs extremely rapidly, with a second order rate constant of 2–7 × 10⁷ M⁻¹s⁻¹ for the *D. africanus* (Pieulle et al., 1999) and the *M. thermoacetica* (Furdui & Ragsdale, 2002) PFORs. Since the PFOR reaction is reversible, the enzyme has also been called pyruvate synthase. In methanogens and other anaerobic microbes synthesizing cell carbon by the Wood-Ljungdahl pathway, pyruvate formation is a most important reaction because it links the Wood-Ljungdahl pathway to the incomplete reductive tricarboxylic acid cycle, which generates biosynthetic intermediates. The tremendous energy barrier for pyruvate formation appears to be accomplished by reverse electron transfer involving coupling of H₂ oxidation by the membrane-associated *Ech* hydrogenase to the membrane (Meuer et al., 2002). Two genes were recently discovered that encode proteins (PorE and PorF) and are components of a specialized system required to transfer low-potential electrons for pyruvate biosynthesis (Lin & Whitman, 2003; Lin et al., 2003).

\[
\text{PFOR(EC1.2.7.1): } \text{pyruvate} + \text{CoA} + 2\text{Fd(ox)} \rightarrow \text{CO}_2 \\
+ \text{H}^+ + \text{acetyl-CoA} + 2\text{Fd(red)} \quad [7]
\]

The crystal structure of the *Desulfovibrio africanus* PFOR was determined (Chabriere et al., 1999). This protein contains 7 structural domains. The active site contains TPP and a proximal [4Fe-4S]²⁺/¹⁺ cluster, which are buried within the protein. Two additional [4Fe-4S]²⁺/¹⁺ clusters lead to the surface, where interactions with a redox partner such as ferredoxin can occur (Chabriere et al., 1999). Each of the three clusters is separated by ~13 Å (center-to-center).

Two key steps in the mechanism are the generation and decay of a substrate-derived hydroxyethyl-TPP radical (HE-TPP) intermediate (Figure 18). The radical intermediate has been captured at 80% occupancy in the crystal structure of the PFOR from *D. africanus* (Chabriere et al., 2001). A provocative hypothesis proposed that the thiazolium ring has lost its aromaticity in the radical intermediate to form a σ/π-type radical. Unusual characteristics of this radical are ketonization of the hydroxy group at C2α to form an acetyl radical, a long C2-C2α bond, sp⁶ hybridization at thiazolium atoms N3 and C5, and tautomerization of the C4-C5 double bond to give an exocyclic double bond. This proposed structure requires further validation to ensure that it is consistent with EPR spectroscopic data, since some preliminary results indicate that the radical may be best explained as a π radical. The figure shows the radical localized on oxygen, but since the thiazolium is aromatic, the spin density would be somewhat delocalized over the thiazolium ring.

When the rate constants for the different steps in the PFOR mechanism were determined, it was found that CoA increases the rate of electron transfer from the radical to one of the [4Fe-4S] clusters in the protein by 10⁵-fold (Furdui & Ragsdale, 2002; Menon & Ragsdale, 1997). Analysis by Marcus theory indicates the thiol group of CoA lends over 40 kJ/mol to the electron transfer rate enhancement (Furdui & Ragsdale, 2002). Future experiments will be aimed at elucidating how CoA increases the rate of this electron transfer reaction.
PERSPECTIVES

This review has focused on the biochemistry of microbial carbon monoxide metabolism. It now appears plausible that the use of CO is an evolutionarily ancient process, perhaps initiating with simple metal clusters and increasing in efficiency as the metallocenters became enveloped by peptides and then by complex evolving proteins. The structures of three distinct types of proteins that metabolize CO have appeared, along with one that controls gene expression in response to the presence of CO. In sum, four different transition metals (Cu, Ni, Fe, and Mo) in different arrangements are the cornerstones of CO metabolism.

Mutagenesis and spectroscopic studies are uncovering how ligand exchange reactions, apparently coupled to conformational changes in a long helix at the subunit interface, control whether the heme-based CO sensor binds DNA or not. A crystal structure of the CO-bound form of this protein will be important in further understanding this system.

A Cu molybdopterin center that has relatively low efficiency has been shown to be responsible for CO oxidation in some aerobic bacteria, while Ni-Fe-S centers prevail in the anaerobic world. Remarkably, two different Ni metallocenters in apparently unrelated proteins have evolved: a NiFe4S4 center in CODH to oxidize CO at rates exceeding 10^9 M^-1s^-1 and a Ni2Fe4S4 center in ACS to synthesize the key metabolic building block acetyl-CoA by condensing CO with a methyl group and Coenzyme A. The long-awaited molecular structures of these catalytic centers are now known. Now biological, computational, synthetic, structural, and physical chemists are at this scientific frontier attempting to understand how these remarkable biorganometallic reactions occur. Over the next few years, we can hope that the crystal structures of the intermediates can be determined, including M-CO, M-CH3, M-acetyl, M-SCoA for ACS and M-CO, M-hydroxide, perhaps even M-CO2 for CODH. One can also expect to learn more about how conformational changes in the CODH/ACS are coordinated with catalysis. Hopefully, questions about whether the catalytic cycles operate through paramagnetic or diamagnetic mechanisms will be clearly resolved by scientists who are at work modeling, calculating, modifying, measuring, and visualizing the enzymes and their active centers.

One of the most exciting recent findings has been the discovery of a long channel that directs CO that is generated by CODH to the ACS active site. The chemical nature of this channel will soon be revealed and we will have a better understanding of how one can direct the movement of a small hydrophobic gas molecule over relatively long distances. Precise functioning of this channel is paramount to the proper operation of the CODH/ACS nanomachine.

CO metabolism is linked to pathways for energy generation and cell carbon synthesis in these organisms. We will soon see the crystal structure of MeTr with bound CH3-H4folate, which will help us understand the nature of electrophilic activation of the methyl group. How the pterin and the Co center, bound to the CFeSP, are positioned in the transition state, and how protonation of the pterin is linked to methyl transfer, will continue to be the focus of studies on this class of proteins.

The crystal structure of PFOR, which links CO metabolism to cell carbon synthesis, has appeared. This is an entirely different mechanism of acetyl-CoA synthesis. We will soon have a revised structure of the substrate-derived HE-TPP radical intermediate in the PFOR mechanism. Over the next few years, the reader can expect to learn how this radical reacts with the thiol of CoA to generate acetyl-CoA. Generation of pyruvate from acetyl-CoA is a Herculean task, and how energy is transformed to accomplish this uphill reaction will be an exciting area.

It seems a safe bet that studies of CO metabolism will continue to be an exciting research area for microbiologists, biochemists, chemists, and physicists. This research is also expected to be an area for chemical and biological engineers to develop new catalysts that can help solve some environmental problems, like lowering greenhouse gas levels and cleaning up hazardous wastes, and facilitate difficult chemistry, like CO2 activation.

ACKNOWLEDGEMENTS

I thank Gary Roberts and David Grahame for their useful comments and suggestions on the manuscript. I thank my students and postdoctors for their dedicated work on the CODH/ACS system, especially Javier Seravalli who has worked on all of the Wood-Ljungdahl pathway proteins. I am grateful to Lars Ljungdahl for introducing me to acetogenic bacteria as a graduate student at Georgia and the late Harland Wood for supporting my work on this system as a postdoctor at Case Western Reserve University. I am greatly appreciative of various collaborators who have worked with me on different aspects of the Wood-Ljungdahl pathway, especially Bill Antholine, Kim Bagley, Tadhg Begley, Thomas Brunold, Steve Cramer, Tzanko Doukov, Cathy Drennan, Juan Fontecilla-Camps, Gary Gerfen, Weiwei Gu, and Tom Spiro over the last few years.

REFERENCES

Daniel, S.L., Hsu, T., Dean, S.I., and Drake, H.L. 1990. Characterization of the H₂- and CO-dependent chemolithotrophic potentials of
the acetogens \textit{Clostridium thermoaceticum} and \textit{Acetogenium kivai}. \textit{J Bacteriol} \textbf{172}:4464–4471.

