Klausur zur Vorlesung Koordinationschemie II, WS 2010

29. März 2010, 10:15-11:15 Uhr

Stichworte zur Lösung

- 1 **(a, b, c)** Das Tetrafluoridoferrat(II)-Ion, [FeF₄]²⁻, wird im Vorlesungsskript detailliert behandelt. **(d)** Oktaedrische Koordination in einem BaFeF_{4/2}F₂. **(e)** Oktaedrisch koordinierte Eisenatome in FeF_{6/3} (FeF₂ kristallisiert im Rutiltyp).
- (a) Im Kristallfeldmodell (im Schema links) erscheint die z-Richtung weniger destabilisiert, als magnetisches Orbital ergibt sich d(xz) oder d(yz). (b) σ-Bindung: p(z) an O zu d(z²) an V, zwei π-Bindungen: p(x) und p(y) an O zu d(xz) und d(yz) an V, daher die drei Bindungsstriche. (c) Im Schema ist rechts dargestellt, wie die beiden π-Bindungen die metallständigen Orbitale d(xz) und d(yz) destabilisieren. Dies könnte dazu führen, dass d(xy) stabiler als diese und damit zum magnetischen Orbital wird.

3 (a, b) $d(x^2-y^2)$, zu dem d(xy), d(xz) und d(yz) am Vanadium(IV)-Zentrum orthogonal stehen. Viele orthogonale Wechselwirkungen auch unter Einschluss der Sauerstoff-p-Orbitale, also ferromagnetische Kopplung. Eine Ausnahme: mit Cu- $d(x^2-y^2)$, O-p(x/y) und V-d(xy) lässt sich eine π -Wechselwirkung formulieren.